Description: A submonoid of a topological monoid is a topological monoid. (Contributed by Mario Carneiro, 6-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | subgtgp.h | |
|
Assertion | submtmd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subgtgp.h | |
|
2 | 1 | submmnd | |
3 | 2 | adantl | |
4 | tmdtps | |
|
5 | resstps | |
|
6 | 4 5 | sylan | |
7 | 1 6 | eqeltrid | |
8 | eqid | |
|
9 | eqid | |
|
10 | eqid | |
|
11 | 8 9 10 | plusffval | |
12 | 1 | submbas | |
13 | 12 | adantl | |
14 | eqid | |
|
15 | 1 14 | ressplusg | |
16 | 15 | adantl | |
17 | 16 | oveqd | |
18 | 13 13 17 | mpoeq123dv | |
19 | 11 18 | eqtr4id | |
20 | eqid | |
|
21 | eqid | |
|
22 | eqid | |
|
23 | 21 22 | tmdtopon | |
24 | 23 | adantr | |
25 | 22 | submss | |
26 | 25 | adantl | |
27 | eqid | |
|
28 | 22 14 27 | plusffval | |
29 | 21 27 | tmdcn | |
30 | 28 29 | eqeltrrid | |
31 | 30 | adantr | |
32 | 20 24 26 20 24 26 31 | cnmpt2res | |
33 | 19 32 | eqeltrd | |
34 | 8 10 | mndplusf | |
35 | frn | |
|
36 | 3 34 35 | 3syl | |
37 | 36 13 | sseqtrrd | |
38 | cnrest2 | |
|
39 | 24 37 26 38 | syl3anc | |
40 | 33 39 | mpbid | |
41 | 1 21 | resstopn | |
42 | 10 41 | istmd | |
43 | 3 7 40 42 | syl3anbrc | |