Metamath Proof Explorer


Theorem submtmd

Description: A submonoid of a topological monoid is a topological monoid. (Contributed by Mario Carneiro, 6-Oct-2015)

Ref Expression
Hypothesis subgtgp.h H=G𝑠S
Assertion submtmd GTopMndSSubMndGHTopMnd

Proof

Step Hyp Ref Expression
1 subgtgp.h H=G𝑠S
2 1 submmnd SSubMndGHMnd
3 2 adantl GTopMndSSubMndGHMnd
4 tmdtps GTopMndGTopSp
5 resstps GTopSpSSubMndGG𝑠STopSp
6 4 5 sylan GTopMndSSubMndGG𝑠STopSp
7 1 6 eqeltrid GTopMndSSubMndGHTopSp
8 eqid BaseH=BaseH
9 eqid +H=+H
10 eqid +𝑓H=+𝑓H
11 8 9 10 plusffval +𝑓H=xBaseH,yBaseHx+Hy
12 1 submbas SSubMndGS=BaseH
13 12 adantl GTopMndSSubMndGS=BaseH
14 eqid +G=+G
15 1 14 ressplusg SSubMndG+G=+H
16 15 adantl GTopMndSSubMndG+G=+H
17 16 oveqd GTopMndSSubMndGx+Gy=x+Hy
18 13 13 17 mpoeq123dv GTopMndSSubMndGxS,ySx+Gy=xBaseH,yBaseHx+Hy
19 11 18 eqtr4id GTopMndSSubMndG+𝑓H=xS,ySx+Gy
20 eqid TopOpenG𝑡S=TopOpenG𝑡S
21 eqid TopOpenG=TopOpenG
22 eqid BaseG=BaseG
23 21 22 tmdtopon GTopMndTopOpenGTopOnBaseG
24 23 adantr GTopMndSSubMndGTopOpenGTopOnBaseG
25 22 submss SSubMndGSBaseG
26 25 adantl GTopMndSSubMndGSBaseG
27 eqid +𝑓G=+𝑓G
28 22 14 27 plusffval +𝑓G=xBaseG,yBaseGx+Gy
29 21 27 tmdcn GTopMnd+𝑓GTopOpenG×tTopOpenGCnTopOpenG
30 28 29 eqeltrrid GTopMndxBaseG,yBaseGx+GyTopOpenG×tTopOpenGCnTopOpenG
31 30 adantr GTopMndSSubMndGxBaseG,yBaseGx+GyTopOpenG×tTopOpenGCnTopOpenG
32 20 24 26 20 24 26 31 cnmpt2res GTopMndSSubMndGxS,ySx+GyTopOpenG𝑡S×tTopOpenG𝑡SCnTopOpenG
33 19 32 eqeltrd GTopMndSSubMndG+𝑓HTopOpenG𝑡S×tTopOpenG𝑡SCnTopOpenG
34 8 10 mndplusf HMnd+𝑓H:BaseH×BaseHBaseH
35 frn +𝑓H:BaseH×BaseHBaseHran+𝑓HBaseH
36 3 34 35 3syl GTopMndSSubMndGran+𝑓HBaseH
37 36 13 sseqtrrd GTopMndSSubMndGran+𝑓HS
38 cnrest2 TopOpenGTopOnBaseGran+𝑓HSSBaseG+𝑓HTopOpenG𝑡S×tTopOpenG𝑡SCnTopOpenG+𝑓HTopOpenG𝑡S×tTopOpenG𝑡SCnTopOpenG𝑡S
39 24 37 26 38 syl3anc GTopMndSSubMndG+𝑓HTopOpenG𝑡S×tTopOpenG𝑡SCnTopOpenG+𝑓HTopOpenG𝑡S×tTopOpenG𝑡SCnTopOpenG𝑡S
40 33 39 mpbid GTopMndSSubMndG+𝑓HTopOpenG𝑡S×tTopOpenG𝑡SCnTopOpenG𝑡S
41 1 21 resstopn TopOpenG𝑡S=TopOpenH
42 10 41 istmd HTopMndHMndHTopSp+𝑓HTopOpenG𝑡S×tTopOpenG𝑡SCnTopOpenG𝑡S
43 3 7 40 42 syl3anbrc GTopMndSSubMndGHTopMnd