| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnmpt1res.2 |
⊢ 𝐾 = ( 𝐽 ↾t 𝑌 ) |
| 2 |
|
cnmpt1res.3 |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 3 |
|
cnmpt1res.5 |
⊢ ( 𝜑 → 𝑌 ⊆ 𝑋 ) |
| 4 |
|
cnmpt2res.7 |
⊢ 𝑁 = ( 𝑀 ↾t 𝑊 ) |
| 5 |
|
cnmpt2res.8 |
⊢ ( 𝜑 → 𝑀 ∈ ( TopOn ‘ 𝑍 ) ) |
| 6 |
|
cnmpt2res.9 |
⊢ ( 𝜑 → 𝑊 ⊆ 𝑍 ) |
| 7 |
|
cnmpt2res.10 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑍 ↦ 𝐴 ) ∈ ( ( 𝐽 ×t 𝑀 ) Cn 𝐿 ) ) |
| 8 |
|
xpss12 |
⊢ ( ( 𝑌 ⊆ 𝑋 ∧ 𝑊 ⊆ 𝑍 ) → ( 𝑌 × 𝑊 ) ⊆ ( 𝑋 × 𝑍 ) ) |
| 9 |
3 6 8
|
syl2anc |
⊢ ( 𝜑 → ( 𝑌 × 𝑊 ) ⊆ ( 𝑋 × 𝑍 ) ) |
| 10 |
|
txtopon |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑀 ∈ ( TopOn ‘ 𝑍 ) ) → ( 𝐽 ×t 𝑀 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑍 ) ) ) |
| 11 |
2 5 10
|
syl2anc |
⊢ ( 𝜑 → ( 𝐽 ×t 𝑀 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑍 ) ) ) |
| 12 |
|
toponuni |
⊢ ( ( 𝐽 ×t 𝑀 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑍 ) ) → ( 𝑋 × 𝑍 ) = ∪ ( 𝐽 ×t 𝑀 ) ) |
| 13 |
11 12
|
syl |
⊢ ( 𝜑 → ( 𝑋 × 𝑍 ) = ∪ ( 𝐽 ×t 𝑀 ) ) |
| 14 |
9 13
|
sseqtrd |
⊢ ( 𝜑 → ( 𝑌 × 𝑊 ) ⊆ ∪ ( 𝐽 ×t 𝑀 ) ) |
| 15 |
|
eqid |
⊢ ∪ ( 𝐽 ×t 𝑀 ) = ∪ ( 𝐽 ×t 𝑀 ) |
| 16 |
15
|
cnrest |
⊢ ( ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑍 ↦ 𝐴 ) ∈ ( ( 𝐽 ×t 𝑀 ) Cn 𝐿 ) ∧ ( 𝑌 × 𝑊 ) ⊆ ∪ ( 𝐽 ×t 𝑀 ) ) → ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑍 ↦ 𝐴 ) ↾ ( 𝑌 × 𝑊 ) ) ∈ ( ( ( 𝐽 ×t 𝑀 ) ↾t ( 𝑌 × 𝑊 ) ) Cn 𝐿 ) ) |
| 17 |
7 14 16
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑍 ↦ 𝐴 ) ↾ ( 𝑌 × 𝑊 ) ) ∈ ( ( ( 𝐽 ×t 𝑀 ) ↾t ( 𝑌 × 𝑊 ) ) Cn 𝐿 ) ) |
| 18 |
|
resmpo |
⊢ ( ( 𝑌 ⊆ 𝑋 ∧ 𝑊 ⊆ 𝑍 ) → ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑍 ↦ 𝐴 ) ↾ ( 𝑌 × 𝑊 ) ) = ( 𝑥 ∈ 𝑌 , 𝑦 ∈ 𝑊 ↦ 𝐴 ) ) |
| 19 |
3 6 18
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑍 ↦ 𝐴 ) ↾ ( 𝑌 × 𝑊 ) ) = ( 𝑥 ∈ 𝑌 , 𝑦 ∈ 𝑊 ↦ 𝐴 ) ) |
| 20 |
|
topontop |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) |
| 21 |
2 20
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 22 |
|
topontop |
⊢ ( 𝑀 ∈ ( TopOn ‘ 𝑍 ) → 𝑀 ∈ Top ) |
| 23 |
5 22
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ Top ) |
| 24 |
|
toponmax |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 ∈ 𝐽 ) |
| 25 |
2 24
|
syl |
⊢ ( 𝜑 → 𝑋 ∈ 𝐽 ) |
| 26 |
25 3
|
ssexd |
⊢ ( 𝜑 → 𝑌 ∈ V ) |
| 27 |
|
toponmax |
⊢ ( 𝑀 ∈ ( TopOn ‘ 𝑍 ) → 𝑍 ∈ 𝑀 ) |
| 28 |
5 27
|
syl |
⊢ ( 𝜑 → 𝑍 ∈ 𝑀 ) |
| 29 |
28 6
|
ssexd |
⊢ ( 𝜑 → 𝑊 ∈ V ) |
| 30 |
|
txrest |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑀 ∈ Top ) ∧ ( 𝑌 ∈ V ∧ 𝑊 ∈ V ) ) → ( ( 𝐽 ×t 𝑀 ) ↾t ( 𝑌 × 𝑊 ) ) = ( ( 𝐽 ↾t 𝑌 ) ×t ( 𝑀 ↾t 𝑊 ) ) ) |
| 31 |
21 23 26 29 30
|
syl22anc |
⊢ ( 𝜑 → ( ( 𝐽 ×t 𝑀 ) ↾t ( 𝑌 × 𝑊 ) ) = ( ( 𝐽 ↾t 𝑌 ) ×t ( 𝑀 ↾t 𝑊 ) ) ) |
| 32 |
1 4
|
oveq12i |
⊢ ( 𝐾 ×t 𝑁 ) = ( ( 𝐽 ↾t 𝑌 ) ×t ( 𝑀 ↾t 𝑊 ) ) |
| 33 |
31 32
|
eqtr4di |
⊢ ( 𝜑 → ( ( 𝐽 ×t 𝑀 ) ↾t ( 𝑌 × 𝑊 ) ) = ( 𝐾 ×t 𝑁 ) ) |
| 34 |
33
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐽 ×t 𝑀 ) ↾t ( 𝑌 × 𝑊 ) ) Cn 𝐿 ) = ( ( 𝐾 ×t 𝑁 ) Cn 𝐿 ) ) |
| 35 |
17 19 34
|
3eltr3d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑌 , 𝑦 ∈ 𝑊 ↦ 𝐴 ) ∈ ( ( 𝐾 ×t 𝑁 ) Cn 𝐿 ) ) |