Metamath Proof Explorer


Theorem symgsubmefmnd

Description: The symmetric group on a set A is a submonoid of the monoid of endofunctions on A . (Contributed by AV, 18-Feb-2024)

Ref Expression
Hypotheses symgsubmefmnd.m 𝑀 = ( EndoFMnd ‘ 𝐴 )
symgsubmefmnd.g 𝐺 = ( SymGrp ‘ 𝐴 )
symgsubmefmnd.b 𝐵 = ( Base ‘ 𝐺 )
Assertion symgsubmefmnd ( 𝐴𝑉𝐵 ∈ ( SubMnd ‘ 𝑀 ) )

Proof

Step Hyp Ref Expression
1 symgsubmefmnd.m 𝑀 = ( EndoFMnd ‘ 𝐴 )
2 symgsubmefmnd.g 𝐺 = ( SymGrp ‘ 𝐴 )
3 symgsubmefmnd.b 𝐵 = ( Base ‘ 𝐺 )
4 2 3 symgbas 𝐵 = { 𝑓𝑓 : 𝐴1-1-onto𝐴 }
5 inab ( { 𝑓𝑓 : 𝐴1-1𝐴 } ∩ { 𝑓𝑓 : 𝐴onto𝐴 } ) = { 𝑓 ∣ ( 𝑓 : 𝐴1-1𝐴𝑓 : 𝐴onto𝐴 ) }
6 df-f1o ( 𝑓 : 𝐴1-1-onto𝐴 ↔ ( 𝑓 : 𝐴1-1𝐴𝑓 : 𝐴onto𝐴 ) )
7 6 bicomi ( ( 𝑓 : 𝐴1-1𝐴𝑓 : 𝐴onto𝐴 ) ↔ 𝑓 : 𝐴1-1-onto𝐴 )
8 7 abbii { 𝑓 ∣ ( 𝑓 : 𝐴1-1𝐴𝑓 : 𝐴onto𝐴 ) } = { 𝑓𝑓 : 𝐴1-1-onto𝐴 }
9 5 8 eqtr2i { 𝑓𝑓 : 𝐴1-1-onto𝐴 } = ( { 𝑓𝑓 : 𝐴1-1𝐴 } ∩ { 𝑓𝑓 : 𝐴onto𝐴 } )
10 1 injsubmefmnd ( 𝐴𝑉 → { 𝑓𝑓 : 𝐴1-1𝐴 } ∈ ( SubMnd ‘ 𝑀 ) )
11 1 sursubmefmnd ( 𝐴𝑉 → { 𝑓𝑓 : 𝐴onto𝐴 } ∈ ( SubMnd ‘ 𝑀 ) )
12 insubm ( ( { 𝑓𝑓 : 𝐴1-1𝐴 } ∈ ( SubMnd ‘ 𝑀 ) ∧ { 𝑓𝑓 : 𝐴onto𝐴 } ∈ ( SubMnd ‘ 𝑀 ) ) → ( { 𝑓𝑓 : 𝐴1-1𝐴 } ∩ { 𝑓𝑓 : 𝐴onto𝐴 } ) ∈ ( SubMnd ‘ 𝑀 ) )
13 10 11 12 syl2anc ( 𝐴𝑉 → ( { 𝑓𝑓 : 𝐴1-1𝐴 } ∩ { 𝑓𝑓 : 𝐴onto𝐴 } ) ∈ ( SubMnd ‘ 𝑀 ) )
14 9 13 eqeltrid ( 𝐴𝑉 → { 𝑓𝑓 : 𝐴1-1-onto𝐴 } ∈ ( SubMnd ‘ 𝑀 ) )
15 4 14 eqeltrid ( 𝐴𝑉𝐵 ∈ ( SubMnd ‘ 𝑀 ) )