Step |
Hyp |
Ref |
Expression |
1 |
|
symgsubmefmnd.m |
⊢ 𝑀 = ( EndoFMnd ‘ 𝐴 ) |
2 |
|
symgsubmefmnd.g |
⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) |
3 |
|
symgsubmefmnd.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
4 |
2 3
|
symgbas |
⊢ 𝐵 = { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐴 } |
5 |
|
inab |
⊢ ( { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐴 } ∩ { 𝑓 ∣ 𝑓 : 𝐴 –onto→ 𝐴 } ) = { 𝑓 ∣ ( 𝑓 : 𝐴 –1-1→ 𝐴 ∧ 𝑓 : 𝐴 –onto→ 𝐴 ) } |
6 |
|
df-f1o |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐴 ↔ ( 𝑓 : 𝐴 –1-1→ 𝐴 ∧ 𝑓 : 𝐴 –onto→ 𝐴 ) ) |
7 |
6
|
bicomi |
⊢ ( ( 𝑓 : 𝐴 –1-1→ 𝐴 ∧ 𝑓 : 𝐴 –onto→ 𝐴 ) ↔ 𝑓 : 𝐴 –1-1-onto→ 𝐴 ) |
8 |
7
|
abbii |
⊢ { 𝑓 ∣ ( 𝑓 : 𝐴 –1-1→ 𝐴 ∧ 𝑓 : 𝐴 –onto→ 𝐴 ) } = { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐴 } |
9 |
5 8
|
eqtr2i |
⊢ { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐴 } = ( { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐴 } ∩ { 𝑓 ∣ 𝑓 : 𝐴 –onto→ 𝐴 } ) |
10 |
1
|
injsubmefmnd |
⊢ ( 𝐴 ∈ 𝑉 → { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐴 } ∈ ( SubMnd ‘ 𝑀 ) ) |
11 |
1
|
sursubmefmnd |
⊢ ( 𝐴 ∈ 𝑉 → { 𝑓 ∣ 𝑓 : 𝐴 –onto→ 𝐴 } ∈ ( SubMnd ‘ 𝑀 ) ) |
12 |
|
insubm |
⊢ ( ( { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐴 } ∈ ( SubMnd ‘ 𝑀 ) ∧ { 𝑓 ∣ 𝑓 : 𝐴 –onto→ 𝐴 } ∈ ( SubMnd ‘ 𝑀 ) ) → ( { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐴 } ∩ { 𝑓 ∣ 𝑓 : 𝐴 –onto→ 𝐴 } ) ∈ ( SubMnd ‘ 𝑀 ) ) |
13 |
10 11 12
|
syl2anc |
⊢ ( 𝐴 ∈ 𝑉 → ( { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐴 } ∩ { 𝑓 ∣ 𝑓 : 𝐴 –onto→ 𝐴 } ) ∈ ( SubMnd ‘ 𝑀 ) ) |
14 |
9 13
|
eqeltrid |
⊢ ( 𝐴 ∈ 𝑉 → { 𝑓 ∣ 𝑓 : 𝐴 –1-1-onto→ 𝐴 } ∈ ( SubMnd ‘ 𝑀 ) ) |
15 |
4 14
|
eqeltrid |
⊢ ( 𝐴 ∈ 𝑉 → 𝐵 ∈ ( SubMnd ‘ 𝑀 ) ) |