| Step | Hyp | Ref | Expression | 
						
							| 1 |  | submrcl | ⊢ ( 𝐴  ∈  ( SubMnd ‘ 𝑀 )  →  𝑀  ∈  Mnd ) | 
						
							| 2 |  | ssinss1 | ⊢ ( 𝐴  ⊆  ( Base ‘ 𝑀 )  →  ( 𝐴  ∩  𝐵 )  ⊆  ( Base ‘ 𝑀 ) ) | 
						
							| 3 | 2 | 3ad2ant1 | ⊢ ( ( 𝐴  ⊆  ( Base ‘ 𝑀 )  ∧  ( 0g ‘ 𝑀 )  ∈  𝐴  ∧  ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐴 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 )  ∈  𝐴 )  →  ( 𝐴  ∩  𝐵 )  ⊆  ( Base ‘ 𝑀 ) ) | 
						
							| 4 | 3 | ad2antrl | ⊢ ( ( 𝑀  ∈  Mnd  ∧  ( ( 𝐴  ⊆  ( Base ‘ 𝑀 )  ∧  ( 0g ‘ 𝑀 )  ∈  𝐴  ∧  ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐴 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 )  ∈  𝐴 )  ∧  ( 𝐵  ⊆  ( Base ‘ 𝑀 )  ∧  ( 0g ‘ 𝑀 )  ∈  𝐵  ∧  ∀ 𝑎  ∈  𝐵 ∀ 𝑏  ∈  𝐵 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 )  ∈  𝐵 ) ) )  →  ( 𝐴  ∩  𝐵 )  ⊆  ( Base ‘ 𝑀 ) ) | 
						
							| 5 |  | elin | ⊢ ( ( 0g ‘ 𝑀 )  ∈  ( 𝐴  ∩  𝐵 )  ↔  ( ( 0g ‘ 𝑀 )  ∈  𝐴  ∧  ( 0g ‘ 𝑀 )  ∈  𝐵 ) ) | 
						
							| 6 | 5 | simplbi2com | ⊢ ( ( 0g ‘ 𝑀 )  ∈  𝐵  →  ( ( 0g ‘ 𝑀 )  ∈  𝐴  →  ( 0g ‘ 𝑀 )  ∈  ( 𝐴  ∩  𝐵 ) ) ) | 
						
							| 7 | 6 | 3ad2ant2 | ⊢ ( ( 𝐵  ⊆  ( Base ‘ 𝑀 )  ∧  ( 0g ‘ 𝑀 )  ∈  𝐵  ∧  ∀ 𝑎  ∈  𝐵 ∀ 𝑏  ∈  𝐵 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 )  ∈  𝐵 )  →  ( ( 0g ‘ 𝑀 )  ∈  𝐴  →  ( 0g ‘ 𝑀 )  ∈  ( 𝐴  ∩  𝐵 ) ) ) | 
						
							| 8 | 7 | com12 | ⊢ ( ( 0g ‘ 𝑀 )  ∈  𝐴  →  ( ( 𝐵  ⊆  ( Base ‘ 𝑀 )  ∧  ( 0g ‘ 𝑀 )  ∈  𝐵  ∧  ∀ 𝑎  ∈  𝐵 ∀ 𝑏  ∈  𝐵 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 )  ∈  𝐵 )  →  ( 0g ‘ 𝑀 )  ∈  ( 𝐴  ∩  𝐵 ) ) ) | 
						
							| 9 | 8 | 3ad2ant2 | ⊢ ( ( 𝐴  ⊆  ( Base ‘ 𝑀 )  ∧  ( 0g ‘ 𝑀 )  ∈  𝐴  ∧  ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐴 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 )  ∈  𝐴 )  →  ( ( 𝐵  ⊆  ( Base ‘ 𝑀 )  ∧  ( 0g ‘ 𝑀 )  ∈  𝐵  ∧  ∀ 𝑎  ∈  𝐵 ∀ 𝑏  ∈  𝐵 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 )  ∈  𝐵 )  →  ( 0g ‘ 𝑀 )  ∈  ( 𝐴  ∩  𝐵 ) ) ) | 
						
							| 10 | 9 | imp | ⊢ ( ( ( 𝐴  ⊆  ( Base ‘ 𝑀 )  ∧  ( 0g ‘ 𝑀 )  ∈  𝐴  ∧  ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐴 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 )  ∈  𝐴 )  ∧  ( 𝐵  ⊆  ( Base ‘ 𝑀 )  ∧  ( 0g ‘ 𝑀 )  ∈  𝐵  ∧  ∀ 𝑎  ∈  𝐵 ∀ 𝑏  ∈  𝐵 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 )  ∈  𝐵 ) )  →  ( 0g ‘ 𝑀 )  ∈  ( 𝐴  ∩  𝐵 ) ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( 𝑀  ∈  Mnd  ∧  ( ( 𝐴  ⊆  ( Base ‘ 𝑀 )  ∧  ( 0g ‘ 𝑀 )  ∈  𝐴  ∧  ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐴 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 )  ∈  𝐴 )  ∧  ( 𝐵  ⊆  ( Base ‘ 𝑀 )  ∧  ( 0g ‘ 𝑀 )  ∈  𝐵  ∧  ∀ 𝑎  ∈  𝐵 ∀ 𝑏  ∈  𝐵 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 )  ∈  𝐵 ) ) )  →  ( 0g ‘ 𝑀 )  ∈  ( 𝐴  ∩  𝐵 ) ) | 
						
							| 12 |  | elin | ⊢ ( 𝑥  ∈  ( 𝐴  ∩  𝐵 )  ↔  ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  𝐵 ) ) | 
						
							| 13 |  | elin | ⊢ ( 𝑦  ∈  ( 𝐴  ∩  𝐵 )  ↔  ( 𝑦  ∈  𝐴  ∧  𝑦  ∈  𝐵 ) ) | 
						
							| 14 | 12 13 | anbi12i | ⊢ ( ( 𝑥  ∈  ( 𝐴  ∩  𝐵 )  ∧  𝑦  ∈  ( 𝐴  ∩  𝐵 ) )  ↔  ( ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑦  ∈  𝐵 ) ) ) | 
						
							| 15 |  | oveq1 | ⊢ ( 𝑎  =  𝑥  →  ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 )  =  ( 𝑥 ( +g ‘ 𝑀 ) 𝑏 ) ) | 
						
							| 16 | 15 | eleq1d | ⊢ ( 𝑎  =  𝑥  →  ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 )  ∈  𝐴  ↔  ( 𝑥 ( +g ‘ 𝑀 ) 𝑏 )  ∈  𝐴 ) ) | 
						
							| 17 |  | oveq2 | ⊢ ( 𝑏  =  𝑦  →  ( 𝑥 ( +g ‘ 𝑀 ) 𝑏 )  =  ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) | 
						
							| 18 | 17 | eleq1d | ⊢ ( 𝑏  =  𝑦  →  ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑏 )  ∈  𝐴  ↔  ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ∈  𝐴 ) ) | 
						
							| 19 |  | simpl | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  𝐵 )  →  𝑥  ∈  𝐴 ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑦  ∈  𝐵 ) )  →  𝑥  ∈  𝐴 ) | 
						
							| 21 |  | eqidd | ⊢ ( ( ( ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑎  =  𝑥 )  →  𝐴  =  𝐴 ) | 
						
							| 22 |  | simpl | ⊢ ( ( 𝑦  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  →  𝑦  ∈  𝐴 ) | 
						
							| 23 | 22 | adantl | ⊢ ( ( ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑦  ∈  𝐵 ) )  →  𝑦  ∈  𝐴 ) | 
						
							| 24 | 16 18 20 21 23 | rspc2vd | ⊢ ( ( ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑦  ∈  𝐵 ) )  →  ( ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐴 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 )  ∈  𝐴  →  ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ∈  𝐴 ) ) | 
						
							| 25 | 24 | com12 | ⊢ ( ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐴 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 )  ∈  𝐴  →  ( ( ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ∈  𝐴 ) ) | 
						
							| 26 | 25 | 3ad2ant3 | ⊢ ( ( 𝐴  ⊆  ( Base ‘ 𝑀 )  ∧  ( 0g ‘ 𝑀 )  ∈  𝐴  ∧  ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐴 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 )  ∈  𝐴 )  →  ( ( ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ∈  𝐴 ) ) | 
						
							| 27 | 26 | ad2antrl | ⊢ ( ( 𝑀  ∈  Mnd  ∧  ( ( 𝐴  ⊆  ( Base ‘ 𝑀 )  ∧  ( 0g ‘ 𝑀 )  ∈  𝐴  ∧  ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐴 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 )  ∈  𝐴 )  ∧  ( 𝐵  ⊆  ( Base ‘ 𝑀 )  ∧  ( 0g ‘ 𝑀 )  ∈  𝐵  ∧  ∀ 𝑎  ∈  𝐵 ∀ 𝑏  ∈  𝐵 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 )  ∈  𝐵 ) ) )  →  ( ( ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ∈  𝐴 ) ) | 
						
							| 28 | 27 | imp | ⊢ ( ( ( 𝑀  ∈  Mnd  ∧  ( ( 𝐴  ⊆  ( Base ‘ 𝑀 )  ∧  ( 0g ‘ 𝑀 )  ∈  𝐴  ∧  ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐴 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 )  ∈  𝐴 )  ∧  ( 𝐵  ⊆  ( Base ‘ 𝑀 )  ∧  ( 0g ‘ 𝑀 )  ∈  𝐵  ∧  ∀ 𝑎  ∈  𝐵 ∀ 𝑏  ∈  𝐵 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 )  ∈  𝐵 ) ) )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑦  ∈  𝐵 ) ) )  →  ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ∈  𝐴 ) | 
						
							| 29 | 15 | eleq1d | ⊢ ( 𝑎  =  𝑥  →  ( ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 )  ∈  𝐵  ↔  ( 𝑥 ( +g ‘ 𝑀 ) 𝑏 )  ∈  𝐵 ) ) | 
						
							| 30 | 17 | eleq1d | ⊢ ( 𝑏  =  𝑦  →  ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑏 )  ∈  𝐵  ↔  ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ∈  𝐵 ) ) | 
						
							| 31 |  | simpr | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  𝐵 )  →  𝑥  ∈  𝐵 ) | 
						
							| 32 | 31 | adantr | ⊢ ( ( ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑦  ∈  𝐵 ) )  →  𝑥  ∈  𝐵 ) | 
						
							| 33 |  | eqidd | ⊢ ( ( ( ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑎  =  𝑥 )  →  𝐵  =  𝐵 ) | 
						
							| 34 |  | simpr | ⊢ ( ( 𝑦  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  →  𝑦  ∈  𝐵 ) | 
						
							| 35 | 34 | adantl | ⊢ ( ( ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑦  ∈  𝐵 ) )  →  𝑦  ∈  𝐵 ) | 
						
							| 36 | 29 30 32 33 35 | rspc2vd | ⊢ ( ( ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑦  ∈  𝐵 ) )  →  ( ∀ 𝑎  ∈  𝐵 ∀ 𝑏  ∈  𝐵 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 )  ∈  𝐵  →  ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ∈  𝐵 ) ) | 
						
							| 37 | 36 | com12 | ⊢ ( ∀ 𝑎  ∈  𝐵 ∀ 𝑏  ∈  𝐵 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 )  ∈  𝐵  →  ( ( ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ∈  𝐵 ) ) | 
						
							| 38 | 37 | 3ad2ant3 | ⊢ ( ( 𝐵  ⊆  ( Base ‘ 𝑀 )  ∧  ( 0g ‘ 𝑀 )  ∈  𝐵  ∧  ∀ 𝑎  ∈  𝐵 ∀ 𝑏  ∈  𝐵 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 )  ∈  𝐵 )  →  ( ( ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ∈  𝐵 ) ) | 
						
							| 39 | 38 | adantl | ⊢ ( ( ( 𝐴  ⊆  ( Base ‘ 𝑀 )  ∧  ( 0g ‘ 𝑀 )  ∈  𝐴  ∧  ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐴 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 )  ∈  𝐴 )  ∧  ( 𝐵  ⊆  ( Base ‘ 𝑀 )  ∧  ( 0g ‘ 𝑀 )  ∈  𝐵  ∧  ∀ 𝑎  ∈  𝐵 ∀ 𝑏  ∈  𝐵 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 )  ∈  𝐵 ) )  →  ( ( ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ∈  𝐵 ) ) | 
						
							| 40 | 39 | adantl | ⊢ ( ( 𝑀  ∈  Mnd  ∧  ( ( 𝐴  ⊆  ( Base ‘ 𝑀 )  ∧  ( 0g ‘ 𝑀 )  ∈  𝐴  ∧  ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐴 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 )  ∈  𝐴 )  ∧  ( 𝐵  ⊆  ( Base ‘ 𝑀 )  ∧  ( 0g ‘ 𝑀 )  ∈  𝐵  ∧  ∀ 𝑎  ∈  𝐵 ∀ 𝑏  ∈  𝐵 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 )  ∈  𝐵 ) ) )  →  ( ( ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ∈  𝐵 ) ) | 
						
							| 41 | 40 | imp | ⊢ ( ( ( 𝑀  ∈  Mnd  ∧  ( ( 𝐴  ⊆  ( Base ‘ 𝑀 )  ∧  ( 0g ‘ 𝑀 )  ∈  𝐴  ∧  ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐴 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 )  ∈  𝐴 )  ∧  ( 𝐵  ⊆  ( Base ‘ 𝑀 )  ∧  ( 0g ‘ 𝑀 )  ∈  𝐵  ∧  ∀ 𝑎  ∈  𝐵 ∀ 𝑏  ∈  𝐵 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 )  ∈  𝐵 ) ) )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑦  ∈  𝐵 ) ) )  →  ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ∈  𝐵 ) | 
						
							| 42 | 28 41 | elind | ⊢ ( ( ( 𝑀  ∈  Mnd  ∧  ( ( 𝐴  ⊆  ( Base ‘ 𝑀 )  ∧  ( 0g ‘ 𝑀 )  ∈  𝐴  ∧  ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐴 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 )  ∈  𝐴 )  ∧  ( 𝐵  ⊆  ( Base ‘ 𝑀 )  ∧  ( 0g ‘ 𝑀 )  ∈  𝐵  ∧  ∀ 𝑎  ∈  𝐵 ∀ 𝑏  ∈  𝐵 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 )  ∈  𝐵 ) ) )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑦  ∈  𝐵 ) ) )  →  ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ∈  ( 𝐴  ∩  𝐵 ) ) | 
						
							| 43 | 42 | ex | ⊢ ( ( 𝑀  ∈  Mnd  ∧  ( ( 𝐴  ⊆  ( Base ‘ 𝑀 )  ∧  ( 0g ‘ 𝑀 )  ∈  𝐴  ∧  ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐴 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 )  ∈  𝐴 )  ∧  ( 𝐵  ⊆  ( Base ‘ 𝑀 )  ∧  ( 0g ‘ 𝑀 )  ∈  𝐵  ∧  ∀ 𝑎  ∈  𝐵 ∀ 𝑏  ∈  𝐵 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 )  ∈  𝐵 ) ) )  →  ( ( ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ∈  ( 𝐴  ∩  𝐵 ) ) ) | 
						
							| 44 | 14 43 | biimtrid | ⊢ ( ( 𝑀  ∈  Mnd  ∧  ( ( 𝐴  ⊆  ( Base ‘ 𝑀 )  ∧  ( 0g ‘ 𝑀 )  ∈  𝐴  ∧  ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐴 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 )  ∈  𝐴 )  ∧  ( 𝐵  ⊆  ( Base ‘ 𝑀 )  ∧  ( 0g ‘ 𝑀 )  ∈  𝐵  ∧  ∀ 𝑎  ∈  𝐵 ∀ 𝑏  ∈  𝐵 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 )  ∈  𝐵 ) ) )  →  ( ( 𝑥  ∈  ( 𝐴  ∩  𝐵 )  ∧  𝑦  ∈  ( 𝐴  ∩  𝐵 ) )  →  ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ∈  ( 𝐴  ∩  𝐵 ) ) ) | 
						
							| 45 | 44 | ralrimivv | ⊢ ( ( 𝑀  ∈  Mnd  ∧  ( ( 𝐴  ⊆  ( Base ‘ 𝑀 )  ∧  ( 0g ‘ 𝑀 )  ∈  𝐴  ∧  ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐴 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 )  ∈  𝐴 )  ∧  ( 𝐵  ⊆  ( Base ‘ 𝑀 )  ∧  ( 0g ‘ 𝑀 )  ∈  𝐵  ∧  ∀ 𝑎  ∈  𝐵 ∀ 𝑏  ∈  𝐵 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 )  ∈  𝐵 ) ) )  →  ∀ 𝑥  ∈  ( 𝐴  ∩  𝐵 ) ∀ 𝑦  ∈  ( 𝐴  ∩  𝐵 ) ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ∈  ( 𝐴  ∩  𝐵 ) ) | 
						
							| 46 | 4 11 45 | 3jca | ⊢ ( ( 𝑀  ∈  Mnd  ∧  ( ( 𝐴  ⊆  ( Base ‘ 𝑀 )  ∧  ( 0g ‘ 𝑀 )  ∈  𝐴  ∧  ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐴 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 )  ∈  𝐴 )  ∧  ( 𝐵  ⊆  ( Base ‘ 𝑀 )  ∧  ( 0g ‘ 𝑀 )  ∈  𝐵  ∧  ∀ 𝑎  ∈  𝐵 ∀ 𝑏  ∈  𝐵 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 )  ∈  𝐵 ) ) )  →  ( ( 𝐴  ∩  𝐵 )  ⊆  ( Base ‘ 𝑀 )  ∧  ( 0g ‘ 𝑀 )  ∈  ( 𝐴  ∩  𝐵 )  ∧  ∀ 𝑥  ∈  ( 𝐴  ∩  𝐵 ) ∀ 𝑦  ∈  ( 𝐴  ∩  𝐵 ) ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ∈  ( 𝐴  ∩  𝐵 ) ) ) | 
						
							| 47 | 46 | ex | ⊢ ( 𝑀  ∈  Mnd  →  ( ( ( 𝐴  ⊆  ( Base ‘ 𝑀 )  ∧  ( 0g ‘ 𝑀 )  ∈  𝐴  ∧  ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐴 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 )  ∈  𝐴 )  ∧  ( 𝐵  ⊆  ( Base ‘ 𝑀 )  ∧  ( 0g ‘ 𝑀 )  ∈  𝐵  ∧  ∀ 𝑎  ∈  𝐵 ∀ 𝑏  ∈  𝐵 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 )  ∈  𝐵 ) )  →  ( ( 𝐴  ∩  𝐵 )  ⊆  ( Base ‘ 𝑀 )  ∧  ( 0g ‘ 𝑀 )  ∈  ( 𝐴  ∩  𝐵 )  ∧  ∀ 𝑥  ∈  ( 𝐴  ∩  𝐵 ) ∀ 𝑦  ∈  ( 𝐴  ∩  𝐵 ) ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ∈  ( 𝐴  ∩  𝐵 ) ) ) ) | 
						
							| 48 |  | eqid | ⊢ ( Base ‘ 𝑀 )  =  ( Base ‘ 𝑀 ) | 
						
							| 49 |  | eqid | ⊢ ( 0g ‘ 𝑀 )  =  ( 0g ‘ 𝑀 ) | 
						
							| 50 |  | eqid | ⊢ ( +g ‘ 𝑀 )  =  ( +g ‘ 𝑀 ) | 
						
							| 51 | 48 49 50 | issubm | ⊢ ( 𝑀  ∈  Mnd  →  ( 𝐴  ∈  ( SubMnd ‘ 𝑀 )  ↔  ( 𝐴  ⊆  ( Base ‘ 𝑀 )  ∧  ( 0g ‘ 𝑀 )  ∈  𝐴  ∧  ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐴 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 )  ∈  𝐴 ) ) ) | 
						
							| 52 | 48 49 50 | issubm | ⊢ ( 𝑀  ∈  Mnd  →  ( 𝐵  ∈  ( SubMnd ‘ 𝑀 )  ↔  ( 𝐵  ⊆  ( Base ‘ 𝑀 )  ∧  ( 0g ‘ 𝑀 )  ∈  𝐵  ∧  ∀ 𝑎  ∈  𝐵 ∀ 𝑏  ∈  𝐵 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 )  ∈  𝐵 ) ) ) | 
						
							| 53 | 51 52 | anbi12d | ⊢ ( 𝑀  ∈  Mnd  →  ( ( 𝐴  ∈  ( SubMnd ‘ 𝑀 )  ∧  𝐵  ∈  ( SubMnd ‘ 𝑀 ) )  ↔  ( ( 𝐴  ⊆  ( Base ‘ 𝑀 )  ∧  ( 0g ‘ 𝑀 )  ∈  𝐴  ∧  ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐴 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 )  ∈  𝐴 )  ∧  ( 𝐵  ⊆  ( Base ‘ 𝑀 )  ∧  ( 0g ‘ 𝑀 )  ∈  𝐵  ∧  ∀ 𝑎  ∈  𝐵 ∀ 𝑏  ∈  𝐵 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 )  ∈  𝐵 ) ) ) ) | 
						
							| 54 | 48 49 50 | issubm | ⊢ ( 𝑀  ∈  Mnd  →  ( ( 𝐴  ∩  𝐵 )  ∈  ( SubMnd ‘ 𝑀 )  ↔  ( ( 𝐴  ∩  𝐵 )  ⊆  ( Base ‘ 𝑀 )  ∧  ( 0g ‘ 𝑀 )  ∈  ( 𝐴  ∩  𝐵 )  ∧  ∀ 𝑥  ∈  ( 𝐴  ∩  𝐵 ) ∀ 𝑦  ∈  ( 𝐴  ∩  𝐵 ) ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ∈  ( 𝐴  ∩  𝐵 ) ) ) ) | 
						
							| 55 | 47 53 54 | 3imtr4d | ⊢ ( 𝑀  ∈  Mnd  →  ( ( 𝐴  ∈  ( SubMnd ‘ 𝑀 )  ∧  𝐵  ∈  ( SubMnd ‘ 𝑀 ) )  →  ( 𝐴  ∩  𝐵 )  ∈  ( SubMnd ‘ 𝑀 ) ) ) | 
						
							| 56 | 55 | expd | ⊢ ( 𝑀  ∈  Mnd  →  ( 𝐴  ∈  ( SubMnd ‘ 𝑀 )  →  ( 𝐵  ∈  ( SubMnd ‘ 𝑀 )  →  ( 𝐴  ∩  𝐵 )  ∈  ( SubMnd ‘ 𝑀 ) ) ) ) | 
						
							| 57 | 1 56 | mpcom | ⊢ ( 𝐴  ∈  ( SubMnd ‘ 𝑀 )  →  ( 𝐵  ∈  ( SubMnd ‘ 𝑀 )  →  ( 𝐴  ∩  𝐵 )  ∈  ( SubMnd ‘ 𝑀 ) ) ) | 
						
							| 58 | 57 | imp | ⊢ ( ( 𝐴  ∈  ( SubMnd ‘ 𝑀 )  ∧  𝐵  ∈  ( SubMnd ‘ 𝑀 ) )  →  ( 𝐴  ∩  𝐵 )  ∈  ( SubMnd ‘ 𝑀 ) ) |