Metamath Proof Explorer


Theorem rspc2vd

Description: Deduction version of 2-variable restricted specialization, using implicit substitution. Notice that the class D for the second set variable y may depend on the first set variable x . (Contributed by AV, 29-Mar-2021)

Ref Expression
Hypotheses rspc2vd.a ( 𝑥 = 𝐴 → ( 𝜃𝜒 ) )
rspc2vd.b ( 𝑦 = 𝐵 → ( 𝜒𝜓 ) )
rspc2vd.c ( 𝜑𝐴𝐶 )
rspc2vd.d ( ( 𝜑𝑥 = 𝐴 ) → 𝐷 = 𝐸 )
rspc2vd.e ( 𝜑𝐵𝐸 )
Assertion rspc2vd ( 𝜑 → ( ∀ 𝑥𝐶𝑦𝐷 𝜃𝜓 ) )

Proof

Step Hyp Ref Expression
1 rspc2vd.a ( 𝑥 = 𝐴 → ( 𝜃𝜒 ) )
2 rspc2vd.b ( 𝑦 = 𝐵 → ( 𝜒𝜓 ) )
3 rspc2vd.c ( 𝜑𝐴𝐶 )
4 rspc2vd.d ( ( 𝜑𝑥 = 𝐴 ) → 𝐷 = 𝐸 )
5 rspc2vd.e ( 𝜑𝐵𝐸 )
6 3 4 csbied ( 𝜑 𝐴 / 𝑥 𝐷 = 𝐸 )
7 5 6 eleqtrrd ( 𝜑𝐵 𝐴 / 𝑥 𝐷 )
8 nfcsb1v 𝑥 𝐴 / 𝑥 𝐷
9 nfv 𝑥 𝜒
10 8 9 nfralw 𝑥𝑦 𝐴 / 𝑥 𝐷 𝜒
11 csbeq1a ( 𝑥 = 𝐴𝐷 = 𝐴 / 𝑥 𝐷 )
12 11 1 raleqbidv ( 𝑥 = 𝐴 → ( ∀ 𝑦𝐷 𝜃 ↔ ∀ 𝑦 𝐴 / 𝑥 𝐷 𝜒 ) )
13 10 12 rspc ( 𝐴𝐶 → ( ∀ 𝑥𝐶𝑦𝐷 𝜃 → ∀ 𝑦 𝐴 / 𝑥 𝐷 𝜒 ) )
14 3 13 syl ( 𝜑 → ( ∀ 𝑥𝐶𝑦𝐷 𝜃 → ∀ 𝑦 𝐴 / 𝑥 𝐷 𝜒 ) )
15 2 rspcv ( 𝐵 𝐴 / 𝑥 𝐷 → ( ∀ 𝑦 𝐴 / 𝑥 𝐷 𝜒𝜓 ) )
16 7 14 15 sylsyld ( 𝜑 → ( ∀ 𝑥𝐶𝑦𝐷 𝜃𝜓 ) )