Step |
Hyp |
Ref |
Expression |
1 |
|
rspc2vd.a |
⊢ ( 𝑥 = 𝐴 → ( 𝜃 ↔ 𝜒 ) ) |
2 |
|
rspc2vd.b |
⊢ ( 𝑦 = 𝐵 → ( 𝜒 ↔ 𝜓 ) ) |
3 |
|
rspc2vd.c |
⊢ ( 𝜑 → 𝐴 ∈ 𝐶 ) |
4 |
|
rspc2vd.d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝐷 = 𝐸 ) |
5 |
|
rspc2vd.e |
⊢ ( 𝜑 → 𝐵 ∈ 𝐸 ) |
6 |
3 4
|
csbied |
⊢ ( 𝜑 → ⦋ 𝐴 / 𝑥 ⦌ 𝐷 = 𝐸 ) |
7 |
5 6
|
eleqtrrd |
⊢ ( 𝜑 → 𝐵 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) |
8 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝐴 / 𝑥 ⦌ 𝐷 |
9 |
|
nfv |
⊢ Ⅎ 𝑥 𝜒 |
10 |
8 9
|
nfralw |
⊢ Ⅎ 𝑥 ∀ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 𝜒 |
11 |
|
csbeq1a |
⊢ ( 𝑥 = 𝐴 → 𝐷 = ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) |
12 |
11 1
|
raleqbidv |
⊢ ( 𝑥 = 𝐴 → ( ∀ 𝑦 ∈ 𝐷 𝜃 ↔ ∀ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 𝜒 ) ) |
13 |
10 12
|
rspc |
⊢ ( 𝐴 ∈ 𝐶 → ( ∀ 𝑥 ∈ 𝐶 ∀ 𝑦 ∈ 𝐷 𝜃 → ∀ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 𝜒 ) ) |
14 |
3 13
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐶 ∀ 𝑦 ∈ 𝐷 𝜃 → ∀ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 𝜒 ) ) |
15 |
2
|
rspcv |
⊢ ( 𝐵 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 → ( ∀ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 𝜒 → 𝜓 ) ) |
16 |
7 14 15
|
sylsyld |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐶 ∀ 𝑦 ∈ 𝐷 𝜃 → 𝜓 ) ) |