| Step |
Hyp |
Ref |
Expression |
| 1 |
|
submrcl |
|
| 2 |
|
ssinss1 |
|
| 3 |
2
|
3ad2ant1 |
|
| 4 |
3
|
ad2antrl |
|
| 5 |
|
elin |
|
| 6 |
5
|
simplbi2com |
|
| 7 |
6
|
3ad2ant2 |
|
| 8 |
7
|
com12 |
|
| 9 |
8
|
3ad2ant2 |
|
| 10 |
9
|
imp |
|
| 11 |
10
|
adantl |
|
| 12 |
|
elin |
|
| 13 |
|
elin |
|
| 14 |
12 13
|
anbi12i |
|
| 15 |
|
oveq1 |
|
| 16 |
15
|
eleq1d |
|
| 17 |
|
oveq2 |
|
| 18 |
17
|
eleq1d |
|
| 19 |
|
simpl |
|
| 20 |
19
|
adantr |
|
| 21 |
|
eqidd |
|
| 22 |
|
simpl |
|
| 23 |
22
|
adantl |
|
| 24 |
16 18 20 21 23
|
rspc2vd |
|
| 25 |
24
|
com12 |
|
| 26 |
25
|
3ad2ant3 |
|
| 27 |
26
|
ad2antrl |
|
| 28 |
27
|
imp |
|
| 29 |
15
|
eleq1d |
|
| 30 |
17
|
eleq1d |
|
| 31 |
|
simpr |
|
| 32 |
31
|
adantr |
|
| 33 |
|
eqidd |
|
| 34 |
|
simpr |
|
| 35 |
34
|
adantl |
|
| 36 |
29 30 32 33 35
|
rspc2vd |
|
| 37 |
36
|
com12 |
|
| 38 |
37
|
3ad2ant3 |
|
| 39 |
38
|
adantl |
|
| 40 |
39
|
adantl |
|
| 41 |
40
|
imp |
|
| 42 |
28 41
|
elind |
|
| 43 |
42
|
ex |
|
| 44 |
14 43
|
biimtrid |
|
| 45 |
44
|
ralrimivv |
|
| 46 |
4 11 45
|
3jca |
|
| 47 |
46
|
ex |
|
| 48 |
|
eqid |
|
| 49 |
|
eqid |
|
| 50 |
|
eqid |
|
| 51 |
48 49 50
|
issubm |
|
| 52 |
48 49 50
|
issubm |
|
| 53 |
51 52
|
anbi12d |
|
| 54 |
48 49 50
|
issubm |
|
| 55 |
47 53 54
|
3imtr4d |
|
| 56 |
55
|
expd |
|
| 57 |
1 56
|
mpcom |
|
| 58 |
57
|
imp |
|