| Step |
Hyp |
Ref |
Expression |
| 1 |
|
symgsubmefmnd.m |
|- M = ( EndoFMnd ` A ) |
| 2 |
|
symgsubmefmnd.g |
|- G = ( SymGrp ` A ) |
| 3 |
|
symgsubmefmnd.b |
|- B = ( Base ` G ) |
| 4 |
2 3
|
symgbas |
|- B = { f | f : A -1-1-onto-> A } |
| 5 |
|
inab |
|- ( { f | f : A -1-1-> A } i^i { f | f : A -onto-> A } ) = { f | ( f : A -1-1-> A /\ f : A -onto-> A ) } |
| 6 |
|
df-f1o |
|- ( f : A -1-1-onto-> A <-> ( f : A -1-1-> A /\ f : A -onto-> A ) ) |
| 7 |
6
|
bicomi |
|- ( ( f : A -1-1-> A /\ f : A -onto-> A ) <-> f : A -1-1-onto-> A ) |
| 8 |
7
|
abbii |
|- { f | ( f : A -1-1-> A /\ f : A -onto-> A ) } = { f | f : A -1-1-onto-> A } |
| 9 |
5 8
|
eqtr2i |
|- { f | f : A -1-1-onto-> A } = ( { f | f : A -1-1-> A } i^i { f | f : A -onto-> A } ) |
| 10 |
1
|
injsubmefmnd |
|- ( A e. V -> { f | f : A -1-1-> A } e. ( SubMnd ` M ) ) |
| 11 |
1
|
sursubmefmnd |
|- ( A e. V -> { f | f : A -onto-> A } e. ( SubMnd ` M ) ) |
| 12 |
|
insubm |
|- ( ( { f | f : A -1-1-> A } e. ( SubMnd ` M ) /\ { f | f : A -onto-> A } e. ( SubMnd ` M ) ) -> ( { f | f : A -1-1-> A } i^i { f | f : A -onto-> A } ) e. ( SubMnd ` M ) ) |
| 13 |
10 11 12
|
syl2anc |
|- ( A e. V -> ( { f | f : A -1-1-> A } i^i { f | f : A -onto-> A } ) e. ( SubMnd ` M ) ) |
| 14 |
9 13
|
eqeltrid |
|- ( A e. V -> { f | f : A -1-1-onto-> A } e. ( SubMnd ` M ) ) |
| 15 |
4 14
|
eqeltrid |
|- ( A e. V -> B e. ( SubMnd ` M ) ) |