Step |
Hyp |
Ref |
Expression |
1 |
|
symgsubmefmnd.m |
|- M = ( EndoFMnd ` A ) |
2 |
|
symgsubmefmnd.g |
|- G = ( SymGrp ` A ) |
3 |
|
symgsubmefmnd.b |
|- B = ( Base ` G ) |
4 |
2 3
|
symgbas |
|- B = { f | f : A -1-1-onto-> A } |
5 |
|
inab |
|- ( { f | f : A -1-1-> A } i^i { f | f : A -onto-> A } ) = { f | ( f : A -1-1-> A /\ f : A -onto-> A ) } |
6 |
|
df-f1o |
|- ( f : A -1-1-onto-> A <-> ( f : A -1-1-> A /\ f : A -onto-> A ) ) |
7 |
6
|
bicomi |
|- ( ( f : A -1-1-> A /\ f : A -onto-> A ) <-> f : A -1-1-onto-> A ) |
8 |
7
|
abbii |
|- { f | ( f : A -1-1-> A /\ f : A -onto-> A ) } = { f | f : A -1-1-onto-> A } |
9 |
5 8
|
eqtr2i |
|- { f | f : A -1-1-onto-> A } = ( { f | f : A -1-1-> A } i^i { f | f : A -onto-> A } ) |
10 |
1
|
injsubmefmnd |
|- ( A e. V -> { f | f : A -1-1-> A } e. ( SubMnd ` M ) ) |
11 |
1
|
sursubmefmnd |
|- ( A e. V -> { f | f : A -onto-> A } e. ( SubMnd ` M ) ) |
12 |
|
insubm |
|- ( ( { f | f : A -1-1-> A } e. ( SubMnd ` M ) /\ { f | f : A -onto-> A } e. ( SubMnd ` M ) ) -> ( { f | f : A -1-1-> A } i^i { f | f : A -onto-> A } ) e. ( SubMnd ` M ) ) |
13 |
10 11 12
|
syl2anc |
|- ( A e. V -> ( { f | f : A -1-1-> A } i^i { f | f : A -onto-> A } ) e. ( SubMnd ` M ) ) |
14 |
9 13
|
eqeltrid |
|- ( A e. V -> { f | f : A -1-1-onto-> A } e. ( SubMnd ` M ) ) |
15 |
4 14
|
eqeltrid |
|- ( A e. V -> B e. ( SubMnd ` M ) ) |