Step |
Hyp |
Ref |
Expression |
1 |
|
dmmpt.1 |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
2 |
|
df-mpt |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } |
3 |
1 2
|
eqtri |
⊢ 𝐹 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } |
4 |
3
|
cnveqi |
⊢ ◡ 𝐹 = ◡ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } |
5 |
|
cnvopab |
⊢ ◡ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } = { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } |
6 |
4 5
|
eqtri |
⊢ ◡ 𝐹 = { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } |
7 |
6
|
imaeq1i |
⊢ ( ◡ 𝐹 “ 𝐶 ) = ( { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } “ 𝐶 ) |
8 |
|
df-ima |
⊢ ( { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } “ 𝐶 ) = ran ( { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } ↾ 𝐶 ) |
9 |
|
resopab |
⊢ ( { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } ↾ 𝐶 ) = { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) ) } |
10 |
9
|
rneqi |
⊢ ran ( { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } ↾ 𝐶 ) = ran { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) ) } |
11 |
|
ancom |
⊢ ( ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) ∧ 𝑦 ∈ 𝐶 ) ) |
12 |
|
anass |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) ∧ 𝑦 ∈ 𝐶 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 = 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ) |
13 |
11 12
|
bitri |
⊢ ( ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 = 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ) |
14 |
13
|
exbii |
⊢ ( ∃ 𝑦 ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) ) ↔ ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 = 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ) |
15 |
|
19.42v |
⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 = 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ) |
16 |
|
dfclel |
⊢ ( 𝐵 ∈ 𝐶 ↔ ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) |
17 |
16
|
bicomi |
⊢ ( ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝑦 ∈ 𝐶 ) ↔ 𝐵 ∈ 𝐶 ) |
18 |
17
|
anbi2i |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐶 ) ) |
19 |
15 18
|
bitri |
⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 = 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐶 ) ) |
20 |
14 19
|
bitri |
⊢ ( ∃ 𝑦 ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐶 ) ) |
21 |
20
|
abbii |
⊢ { 𝑥 ∣ ∃ 𝑦 ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) ) } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐶 ) } |
22 |
|
rnopab |
⊢ ran { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) ) } = { 𝑥 ∣ ∃ 𝑦 ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) ) } |
23 |
|
df-rab |
⊢ { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ 𝐶 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐶 ) } |
24 |
21 22 23
|
3eqtr4i |
⊢ ran { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑦 ∈ 𝐶 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) ) } = { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ 𝐶 } |
25 |
10 24
|
eqtri |
⊢ ran ( { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } ↾ 𝐶 ) = { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ 𝐶 } |
26 |
8 25
|
eqtri |
⊢ ( { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } “ 𝐶 ) = { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ 𝐶 } |
27 |
7 26
|
eqtri |
⊢ ( ◡ 𝐹 “ 𝐶 ) = { 𝑥 ∈ 𝐴 ∣ 𝐵 ∈ 𝐶 } |