Metamath Proof Explorer


Theorem cnmpt1res

Description: The restriction of a continuous function to a subset is continuous. (Contributed by Mario Carneiro, 5-Jun-2014)

Ref Expression
Hypotheses cnmpt1res.2 𝐾 = ( 𝐽t 𝑌 )
cnmpt1res.3 ( 𝜑𝐽 ∈ ( TopOn ‘ 𝑋 ) )
cnmpt1res.5 ( 𝜑𝑌𝑋 )
cnmpt1res.6 ( 𝜑 → ( 𝑥𝑋𝐴 ) ∈ ( 𝐽 Cn 𝐿 ) )
Assertion cnmpt1res ( 𝜑 → ( 𝑥𝑌𝐴 ) ∈ ( 𝐾 Cn 𝐿 ) )

Proof

Step Hyp Ref Expression
1 cnmpt1res.2 𝐾 = ( 𝐽t 𝑌 )
2 cnmpt1res.3 ( 𝜑𝐽 ∈ ( TopOn ‘ 𝑋 ) )
3 cnmpt1res.5 ( 𝜑𝑌𝑋 )
4 cnmpt1res.6 ( 𝜑 → ( 𝑥𝑋𝐴 ) ∈ ( 𝐽 Cn 𝐿 ) )
5 3 resmptd ( 𝜑 → ( ( 𝑥𝑋𝐴 ) ↾ 𝑌 ) = ( 𝑥𝑌𝐴 ) )
6 toponuni ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = 𝐽 )
7 2 6 syl ( 𝜑𝑋 = 𝐽 )
8 3 7 sseqtrd ( 𝜑𝑌 𝐽 )
9 eqid 𝐽 = 𝐽
10 9 cnrest ( ( ( 𝑥𝑋𝐴 ) ∈ ( 𝐽 Cn 𝐿 ) ∧ 𝑌 𝐽 ) → ( ( 𝑥𝑋𝐴 ) ↾ 𝑌 ) ∈ ( ( 𝐽t 𝑌 ) Cn 𝐿 ) )
11 4 8 10 syl2anc ( 𝜑 → ( ( 𝑥𝑋𝐴 ) ↾ 𝑌 ) ∈ ( ( 𝐽t 𝑌 ) Cn 𝐿 ) )
12 1 oveq1i ( 𝐾 Cn 𝐿 ) = ( ( 𝐽t 𝑌 ) Cn 𝐿 )
13 11 12 eleqtrrdi ( 𝜑 → ( ( 𝑥𝑋𝐴 ) ↾ 𝑌 ) ∈ ( 𝐾 Cn 𝐿 ) )
14 5 13 eqeltrrd ( 𝜑 → ( 𝑥𝑌𝐴 ) ∈ ( 𝐾 Cn 𝐿 ) )