Step |
Hyp |
Ref |
Expression |
1 |
|
cnmpt1res.2 |
⊢ 𝐾 = ( 𝐽 ↾t 𝑌 ) |
2 |
|
cnmpt1res.3 |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
3 |
|
cnmpt1res.5 |
⊢ ( 𝜑 → 𝑌 ⊆ 𝑋 ) |
4 |
|
cnmpt1res.6 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝐽 Cn 𝐿 ) ) |
5 |
3
|
resmptd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑌 ) = ( 𝑥 ∈ 𝑌 ↦ 𝐴 ) ) |
6 |
|
toponuni |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
7 |
2 6
|
syl |
⊢ ( 𝜑 → 𝑋 = ∪ 𝐽 ) |
8 |
3 7
|
sseqtrd |
⊢ ( 𝜑 → 𝑌 ⊆ ∪ 𝐽 ) |
9 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
10 |
9
|
cnrest |
⊢ ( ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝐽 Cn 𝐿 ) ∧ 𝑌 ⊆ ∪ 𝐽 ) → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑌 ) ∈ ( ( 𝐽 ↾t 𝑌 ) Cn 𝐿 ) ) |
11 |
4 8 10
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑌 ) ∈ ( ( 𝐽 ↾t 𝑌 ) Cn 𝐿 ) ) |
12 |
1
|
oveq1i |
⊢ ( 𝐾 Cn 𝐿 ) = ( ( 𝐽 ↾t 𝑌 ) Cn 𝐿 ) |
13 |
11 12
|
eleqtrrdi |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ↾ 𝑌 ) ∈ ( 𝐾 Cn 𝐿 ) ) |
14 |
5 13
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑌 ↦ 𝐴 ) ∈ ( 𝐾 Cn 𝐿 ) ) |