| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subgntr.h |
⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) |
| 2 |
|
df-ima |
⊢ ( ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) “ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) = ran ( ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ↾ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 3 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 4 |
1 3
|
tgptopon |
⊢ ( 𝐺 ∈ TopGrp → 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) |
| 5 |
4
|
3ad2ant1 |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) → 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) |
| 6 |
5
|
adantr |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) |
| 7 |
|
topontop |
⊢ ( 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) → 𝐽 ∈ Top ) |
| 8 |
5 7
|
syl |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) → 𝐽 ∈ Top ) |
| 9 |
8
|
adantr |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝐽 ∈ Top ) |
| 10 |
|
simpl2 |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 11 |
3
|
subgss |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 12 |
10 11
|
syl |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 13 |
|
toponuni |
⊢ ( 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) → ( Base ‘ 𝐺 ) = ∪ 𝐽 ) |
| 14 |
6 13
|
syl |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → ( Base ‘ 𝐺 ) = ∪ 𝐽 ) |
| 15 |
12 14
|
sseqtrd |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝑆 ⊆ ∪ 𝐽 ) |
| 16 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 17 |
16
|
ntropn |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ∈ 𝐽 ) |
| 18 |
9 15 17
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ∈ 𝐽 ) |
| 19 |
|
toponss |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ∧ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ∈ 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ( Base ‘ 𝐺 ) ) |
| 20 |
6 18 19
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ( Base ‘ 𝐺 ) ) |
| 21 |
20
|
resmptd |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ↾ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) = ( 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ) |
| 22 |
21
|
rneqd |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → ran ( ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ↾ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) = ran ( 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ) |
| 23 |
2 22
|
eqtrid |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) “ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) = ran ( 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ) |
| 24 |
|
simpl1 |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝐺 ∈ TopGrp ) |
| 25 |
|
simpr |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ 𝑆 ) |
| 26 |
16
|
ntrss2 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑆 ) |
| 27 |
9 15 26
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑆 ) |
| 28 |
|
simpl3 |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 29 |
27 28
|
sseldd |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ 𝑆 ) |
| 30 |
|
eqid |
⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) |
| 31 |
30
|
subgsubcl |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ) → ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ∈ 𝑆 ) |
| 32 |
10 25 29 31
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ∈ 𝑆 ) |
| 33 |
12 32
|
sseldd |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ∈ ( Base ‘ 𝐺 ) ) |
| 34 |
|
eqid |
⊢ ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) = ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) |
| 35 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 36 |
34 3 35 1
|
tgplacthmeo |
⊢ ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ∈ ( Base ‘ 𝐺 ) ) → ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ∈ ( 𝐽 Homeo 𝐽 ) ) |
| 37 |
24 33 36
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ∈ ( 𝐽 Homeo 𝐽 ) ) |
| 38 |
|
hmeoima |
⊢ ( ( ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ∈ ( 𝐽 Homeo 𝐽 ) ∧ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ∈ 𝐽 ) → ( ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) “ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∈ 𝐽 ) |
| 39 |
37 18 38
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) “ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∈ 𝐽 ) |
| 40 |
23 39
|
eqeltrrd |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → ran ( 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ∈ 𝐽 ) |
| 41 |
|
tgpgrp |
⊢ ( 𝐺 ∈ TopGrp → 𝐺 ∈ Grp ) |
| 42 |
24 41
|
syl |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝐺 ∈ Grp ) |
| 43 |
11
|
3ad2ant2 |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 44 |
43
|
sselda |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ ( Base ‘ 𝐺 ) ) |
| 45 |
20 28
|
sseldd |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ ( Base ‘ 𝐺 ) ) |
| 46 |
3 35 30
|
grpnpcan |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝐴 ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝐴 ) = 𝑥 ) |
| 47 |
42 44 45 46
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝐴 ) = 𝑥 ) |
| 48 |
|
ovex |
⊢ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝐴 ) ∈ V |
| 49 |
|
eqid |
⊢ ( 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) = ( 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) |
| 50 |
|
oveq2 |
⊢ ( 𝑦 = 𝐴 → ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) = ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝐴 ) ) |
| 51 |
49 50
|
elrnmpt1s |
⊢ ( ( 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ∧ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝐴 ) ∈ V ) → ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝐴 ) ∈ ran ( 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ) |
| 52 |
28 48 51
|
sylancl |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝐴 ) ∈ ran ( 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ) |
| 53 |
47 52
|
eqeltrrd |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ ran ( 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ) |
| 54 |
10
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 55 |
32
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) → ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ∈ 𝑆 ) |
| 56 |
27
|
sselda |
⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) → 𝑦 ∈ 𝑆 ) |
| 57 |
35
|
subgcl |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) |
| 58 |
54 55 56 57
|
syl3anc |
⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) → ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) |
| 59 |
58
|
fmpttd |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) : ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ⟶ 𝑆 ) |
| 60 |
59
|
frnd |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → ran ( 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ⊆ 𝑆 ) |
| 61 |
|
eleq2 |
⊢ ( 𝑢 = ran ( 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) → ( 𝑥 ∈ 𝑢 ↔ 𝑥 ∈ ran ( 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ) ) |
| 62 |
|
sseq1 |
⊢ ( 𝑢 = ran ( 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) → ( 𝑢 ⊆ 𝑆 ↔ ran ( 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ⊆ 𝑆 ) ) |
| 63 |
61 62
|
anbi12d |
⊢ ( 𝑢 = ran ( 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) → ( ( 𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑆 ) ↔ ( 𝑥 ∈ ran ( 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ∧ ran ( 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ⊆ 𝑆 ) ) ) |
| 64 |
63
|
rspcev |
⊢ ( ( ran ( 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ∈ 𝐽 ∧ ( 𝑥 ∈ ran ( 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ∧ ran ( 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ⊆ 𝑆 ) ) → ∃ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑆 ) ) |
| 65 |
40 53 60 64
|
syl12anc |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → ∃ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑆 ) ) |
| 66 |
65
|
ralrimiva |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) → ∀ 𝑥 ∈ 𝑆 ∃ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑆 ) ) |
| 67 |
|
eltop2 |
⊢ ( 𝐽 ∈ Top → ( 𝑆 ∈ 𝐽 ↔ ∀ 𝑥 ∈ 𝑆 ∃ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑆 ) ) ) |
| 68 |
8 67
|
syl |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) → ( 𝑆 ∈ 𝐽 ↔ ∀ 𝑥 ∈ 𝑆 ∃ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑆 ) ) ) |
| 69 |
66 68
|
mpbird |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) → 𝑆 ∈ 𝐽 ) |