| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subgntr.h |
|
| 2 |
|
df-ima |
|
| 3 |
|
eqid |
|
| 4 |
1 3
|
tgptopon |
|
| 5 |
4
|
3ad2ant1 |
|
| 6 |
5
|
adantr |
|
| 7 |
|
topontop |
|
| 8 |
5 7
|
syl |
|
| 9 |
8
|
adantr |
|
| 10 |
|
simpl2 |
|
| 11 |
3
|
subgss |
|
| 12 |
10 11
|
syl |
|
| 13 |
|
toponuni |
|
| 14 |
6 13
|
syl |
|
| 15 |
12 14
|
sseqtrd |
|
| 16 |
|
eqid |
|
| 17 |
16
|
ntropn |
|
| 18 |
9 15 17
|
syl2anc |
|
| 19 |
|
toponss |
|
| 20 |
6 18 19
|
syl2anc |
|
| 21 |
20
|
resmptd |
|
| 22 |
21
|
rneqd |
|
| 23 |
2 22
|
eqtrid |
|
| 24 |
|
simpl1 |
|
| 25 |
|
simpr |
|
| 26 |
16
|
ntrss2 |
|
| 27 |
9 15 26
|
syl2anc |
|
| 28 |
|
simpl3 |
|
| 29 |
27 28
|
sseldd |
|
| 30 |
|
eqid |
|
| 31 |
30
|
subgsubcl |
|
| 32 |
10 25 29 31
|
syl3anc |
|
| 33 |
12 32
|
sseldd |
|
| 34 |
|
eqid |
|
| 35 |
|
eqid |
|
| 36 |
34 3 35 1
|
tgplacthmeo |
|
| 37 |
24 33 36
|
syl2anc |
|
| 38 |
|
hmeoima |
|
| 39 |
37 18 38
|
syl2anc |
|
| 40 |
23 39
|
eqeltrrd |
|
| 41 |
|
tgpgrp |
|
| 42 |
24 41
|
syl |
|
| 43 |
11
|
3ad2ant2 |
|
| 44 |
43
|
sselda |
|
| 45 |
20 28
|
sseldd |
|
| 46 |
3 35 30
|
grpnpcan |
|
| 47 |
42 44 45 46
|
syl3anc |
|
| 48 |
|
ovex |
|
| 49 |
|
eqid |
|
| 50 |
|
oveq2 |
|
| 51 |
49 50
|
elrnmpt1s |
|
| 52 |
28 48 51
|
sylancl |
|
| 53 |
47 52
|
eqeltrrd |
|
| 54 |
10
|
adantr |
|
| 55 |
32
|
adantr |
|
| 56 |
27
|
sselda |
|
| 57 |
35
|
subgcl |
|
| 58 |
54 55 56 57
|
syl3anc |
|
| 59 |
58
|
fmpttd |
|
| 60 |
59
|
frnd |
|
| 61 |
|
eleq2 |
|
| 62 |
|
sseq1 |
|
| 63 |
61 62
|
anbi12d |
|
| 64 |
63
|
rspcev |
|
| 65 |
40 53 60 64
|
syl12anc |
|
| 66 |
65
|
ralrimiva |
|
| 67 |
|
eltop2 |
|
| 68 |
8 67
|
syl |
|
| 69 |
66 68
|
mpbird |
|