| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subgntr.h |
|
| 2 |
|
eqid |
|
| 3 |
1 2
|
tgptopon |
|
| 4 |
3
|
adantr |
|
| 5 |
|
topontop |
|
| 6 |
4 5
|
syl |
|
| 7 |
2
|
subgss |
|
| 8 |
7
|
adantl |
|
| 9 |
|
toponuni |
|
| 10 |
4 9
|
syl |
|
| 11 |
8 10
|
sseqtrd |
|
| 12 |
|
eqid |
|
| 13 |
12
|
clsss3 |
|
| 14 |
6 11 13
|
syl2anc |
|
| 15 |
14 10
|
sseqtrrd |
|
| 16 |
12
|
sscls |
|
| 17 |
6 11 16
|
syl2anc |
|
| 18 |
|
eqid |
|
| 19 |
18
|
subg0cl |
|
| 20 |
19
|
adantl |
|
| 21 |
20
|
ne0d |
|
| 22 |
|
ssn0 |
|
| 23 |
17 21 22
|
syl2anc |
|
| 24 |
|
df-ov |
|
| 25 |
|
opelxpi |
|
| 26 |
|
txcls |
|
| 27 |
4 4 8 8 26
|
syl22anc |
|
| 28 |
|
txtopon |
|
| 29 |
4 4 28
|
syl2anc |
|
| 30 |
|
topontop |
|
| 31 |
29 30
|
syl |
|
| 32 |
|
cnvimass |
|
| 33 |
|
tgpgrp |
|
| 34 |
33
|
adantr |
|
| 35 |
|
eqid |
|
| 36 |
2 35
|
grpsubf |
|
| 37 |
34 36
|
syl |
|
| 38 |
32 37
|
fssdm |
|
| 39 |
|
toponuni |
|
| 40 |
29 39
|
syl |
|
| 41 |
38 40
|
sseqtrd |
|
| 42 |
35
|
subgsubcl |
|
| 43 |
42
|
3expb |
|
| 44 |
43
|
ralrimivva |
|
| 45 |
|
fveq2 |
|
| 46 |
45 24
|
eqtr4di |
|
| 47 |
46
|
eleq1d |
|
| 48 |
47
|
ralxp |
|
| 49 |
44 48
|
sylibr |
|
| 50 |
49
|
adantl |
|
| 51 |
37
|
ffund |
|
| 52 |
|
xpss12 |
|
| 53 |
8 8 52
|
syl2anc |
|
| 54 |
37
|
fdmd |
|
| 55 |
53 54
|
sseqtrrd |
|
| 56 |
|
funimass5 |
|
| 57 |
51 55 56
|
syl2anc |
|
| 58 |
50 57
|
mpbird |
|
| 59 |
|
eqid |
|
| 60 |
59
|
clsss |
|
| 61 |
31 41 58 60
|
syl3anc |
|
| 62 |
1 35
|
tgpsubcn |
|
| 63 |
62
|
adantr |
|
| 64 |
12
|
cncls2i |
|
| 65 |
63 11 64
|
syl2anc |
|
| 66 |
61 65
|
sstrd |
|
| 67 |
27 66
|
eqsstrrd |
|
| 68 |
67
|
sselda |
|
| 69 |
25 68
|
sylan2 |
|
| 70 |
33
|
ad2antrr |
|
| 71 |
|
ffn |
|
| 72 |
|
elpreima |
|
| 73 |
70 36 71 72
|
4syl |
|
| 74 |
69 73
|
mpbid |
|
| 75 |
74
|
simprd |
|
| 76 |
24 75
|
eqeltrid |
|
| 77 |
76
|
ralrimivva |
|
| 78 |
2 35
|
issubg4 |
|
| 79 |
34 78
|
syl |
|
| 80 |
15 23 77 79
|
mpbir3and |
|