Metamath Proof Explorer


Theorem issubg4

Description: A subgroup is a nonempty subset of the group closed under subtraction. (Contributed by Mario Carneiro, 17-Sep-2015)

Ref Expression
Hypotheses issubg4.b B=BaseG
issubg4.p -˙=-G
Assertion issubg4 GGrpSSubGrpGSBSxSySx-˙yS

Proof

Step Hyp Ref Expression
1 issubg4.b B=BaseG
2 issubg4.p -˙=-G
3 1 subgss SSubGrpGSB
4 eqid 0G=0G
5 4 subg0cl SSubGrpG0GS
6 5 ne0d SSubGrpGS
7 2 subgsubcl SSubGrpGxSySx-˙yS
8 7 3expb SSubGrpGxSySx-˙yS
9 8 ralrimivva SSubGrpGxSySx-˙yS
10 3 6 9 3jca SSubGrpGSBSxSySx-˙yS
11 simplrl GGrpSBSxSySx-˙ySSB
12 simplrr GGrpSBSxSySx-˙ySS
13 oveq1 x=0Gx-˙y=0G-˙y
14 13 eleq1d x=0Gx-˙yS0G-˙yS
15 14 ralbidv x=0GySx-˙ySyS0G-˙yS
16 simpr GGrpSBSxSySx-˙ySxSySx-˙yS
17 simprr GGrpSBSS
18 r19.2z SxSySx-˙ySxSySx-˙yS
19 17 18 sylan GGrpSBSxSySx-˙ySxSySx-˙yS
20 oveq2 y=xx-˙y=x-˙x
21 20 eleq1d y=xx-˙ySx-˙xS
22 21 rspcv xSySx-˙ySx-˙xS
23 22 adantl GGrpSBSxSySx-˙ySx-˙xS
24 simprl GGrpSBSSB
25 24 sselda GGrpSBSxSxB
26 1 4 2 grpsubid GGrpxBx-˙x=0G
27 26 adantlr GGrpSBSxBx-˙x=0G
28 25 27 syldan GGrpSBSxSx-˙x=0G
29 28 eleq1d GGrpSBSxSx-˙xS0GS
30 23 29 sylibd GGrpSBSxSySx-˙yS0GS
31 30 rexlimdva GGrpSBSxSySx-˙yS0GS
32 31 imp GGrpSBSxSySx-˙yS0GS
33 19 32 syldan GGrpSBSxSySx-˙yS0GS
34 15 16 33 rspcdva GGrpSBSxSySx-˙ySyS0G-˙yS
35 1 4 grpidcl GGrp0GB
36 35 ad2antrr GGrpSBSyS0GB
37 24 sselda GGrpSBSySyB
38 eqid +G=+G
39 eqid invgG=invgG
40 1 38 39 2 grpsubval 0GByB0G-˙y=0G+GinvgGy
41 36 37 40 syl2anc GGrpSBSyS0G-˙y=0G+GinvgGy
42 simpll GGrpSBSySGGrp
43 1 39 grpinvcl GGrpyBinvgGyB
44 42 37 43 syl2anc GGrpSBSySinvgGyB
45 1 38 4 grplid GGrpinvgGyB0G+GinvgGy=invgGy
46 42 44 45 syl2anc GGrpSBSyS0G+GinvgGy=invgGy
47 41 46 eqtrd GGrpSBSyS0G-˙y=invgGy
48 47 eleq1d GGrpSBSyS0G-˙ySinvgGyS
49 48 ralbidva GGrpSBSyS0G-˙ySySinvgGyS
50 49 adantr GGrpSBSxSySx-˙ySyS0G-˙ySySinvgGyS
51 34 50 mpbid GGrpSBSxSySx-˙ySySinvgGyS
52 fveq2 y=zinvgGy=invgGz
53 52 eleq1d y=zinvgGySinvgGzS
54 53 rspccva ySinvgGySzSinvgGzS
55 54 ad2ant2l GGrpSBSySinvgGySxSzSinvgGzS
56 oveq2 y=invgGzx-˙y=x-˙invgGz
57 56 eleq1d y=invgGzx-˙ySx-˙invgGzS
58 57 rspcv invgGzSySx-˙ySx-˙invgGzS
59 55 58 syl GGrpSBSySinvgGySxSzSySx-˙ySx-˙invgGzS
60 simplll GGrpSBSySinvgGySxSzSGGrp
61 simplrl GGrpSBSySinvgGySSB
62 61 adantr GGrpSBSySinvgGySxSzSSB
63 simprl GGrpSBSySinvgGySxSzSxS
64 62 63 sseldd GGrpSBSySinvgGySxSzSxB
65 simprr GGrpSBSySinvgGySxSzSzS
66 62 65 sseldd GGrpSBSySinvgGySxSzSzB
67 1 38 2 39 60 64 66 grpsubinv GGrpSBSySinvgGySxSzSx-˙invgGz=x+Gz
68 67 eleq1d GGrpSBSySinvgGySxSzSx-˙invgGzSx+GzS
69 59 68 sylibd GGrpSBSySinvgGySxSzSySx-˙ySx+GzS
70 69 anassrs GGrpSBSySinvgGySxSzSySx-˙ySx+GzS
71 70 ralrimdva GGrpSBSySinvgGySxSySx-˙ySzSx+GzS
72 71 ralimdva GGrpSBSySinvgGySxSySx-˙ySxSzSx+GzS
73 72 impancom GGrpSBSxSySx-˙ySySinvgGySxSzSx+GzS
74 51 73 mpd GGrpSBSxSySx-˙ySxSzSx+GzS
75 oveq1 x=yx+Gz=y+Gz
76 75 eleq1d x=yx+GzSy+GzS
77 76 ralbidv x=yzSx+GzSzSy+GzS
78 77 cbvralvw xSzSx+GzSySzSy+GzS
79 74 78 sylib GGrpSBSxSySx-˙ySySzSy+GzS
80 r19.26 ySzSy+GzSinvgGySySzSy+GzSySinvgGyS
81 79 51 80 sylanbrc GGrpSBSxSySx-˙ySySzSy+GzSinvgGyS
82 11 12 81 3jca GGrpSBSxSySx-˙ySSBSySzSy+GzSinvgGyS
83 82 exp42 GGrpSBSxSySx-˙ySSBSySzSy+GzSinvgGyS
84 83 3impd GGrpSBSxSySx-˙ySSBSySzSy+GzSinvgGyS
85 1 38 39 issubg2 GGrpSSubGrpGSBSySzSy+GzSinvgGyS
86 84 85 sylibrd GGrpSBSxSySx-˙ySSSubGrpG
87 10 86 impbid2 GGrpSSubGrpGSBSxSySx-˙yS