Step |
Hyp |
Ref |
Expression |
1 |
|
subgntr.h |
|
2 |
|
nsgsubg |
|
3 |
1
|
clssubg |
|
4 |
2 3
|
sylan2 |
|
5 |
|
df-ima |
|
6 |
|
eqid |
|
7 |
1 6
|
tgptopon |
|
8 |
7
|
ad2antrr |
|
9 |
|
topontop |
|
10 |
8 9
|
syl |
|
11 |
2
|
ad2antlr |
|
12 |
6
|
subgss |
|
13 |
11 12
|
syl |
|
14 |
|
toponuni |
|
15 |
8 14
|
syl |
|
16 |
13 15
|
sseqtrd |
|
17 |
|
eqid |
|
18 |
17
|
clsss3 |
|
19 |
10 16 18
|
syl2anc |
|
20 |
19 15
|
sseqtrrd |
|
21 |
20
|
resmptd |
|
22 |
21
|
rneqd |
|
23 |
5 22
|
eqtrid |
|
24 |
|
eqid |
|
25 |
|
tgptmd |
|
26 |
25
|
ad2antrr |
|
27 |
|
simpr |
|
28 |
8 8 27
|
cnmptc |
|
29 |
8
|
cnmptid |
|
30 |
1 24 26 8 28 29
|
cnmpt1plusg |
|
31 |
|
eqid |
|
32 |
1 31
|
tgpsubcn |
|
33 |
32
|
ad2antrr |
|
34 |
8 30 28 33
|
cnmpt12f |
|
35 |
17
|
cnclsi |
|
36 |
34 16 35
|
syl2anc |
|
37 |
|
df-ima |
|
38 |
13
|
resmptd |
|
39 |
38
|
rneqd |
|
40 |
37 39
|
eqtrid |
|
41 |
6 24 31
|
nsgconj |
|
42 |
41
|
ad4ant234 |
|
43 |
42
|
fmpttd |
|
44 |
43
|
frnd |
|
45 |
40 44
|
eqsstrd |
|
46 |
17
|
clsss |
|
47 |
10 16 45 46
|
syl3anc |
|
48 |
36 47
|
sstrd |
|
49 |
23 48
|
eqsstrrd |
|
50 |
|
ovex |
|
51 |
|
eqid |
|
52 |
50 51
|
fnmpti |
|
53 |
|
df-f |
|
54 |
52 53
|
mpbiran |
|
55 |
49 54
|
sylibr |
|
56 |
51
|
fmpt |
|
57 |
55 56
|
sylibr |
|
58 |
57
|
ralrimiva |
|
59 |
6 24 31
|
isnsg3 |
|
60 |
4 58 59
|
sylanbrc |
|