Step |
Hyp |
Ref |
Expression |
1 |
|
subgntr.h |
|
2 |
|
cldsubg.1 |
|
3 |
|
cldsubg.2 |
|
4 |
|
simpl1 |
|
5 |
1 3
|
tgptopon |
|
6 |
4 5
|
syl |
|
7 |
|
toponuni |
|
8 |
6 7
|
syl |
|
9 |
8
|
difeq1d |
|
10 |
|
simpl2 |
|
11 |
|
unisng |
|
12 |
10 11
|
syl |
|
13 |
12
|
uneq2d |
|
14 |
|
uniun |
|
15 |
|
undif1 |
|
16 |
|
eqid |
|
17 |
3 2 16
|
eqgid |
|
18 |
10 17
|
syl |
|
19 |
2
|
ovexi |
|
20 |
|
tgpgrp |
|
21 |
4 20
|
syl |
|
22 |
3 16
|
grpidcl |
|
23 |
21 22
|
syl |
|
24 |
|
ecelqsg |
|
25 |
19 23 24
|
sylancr |
|
26 |
18 25
|
eqeltrrd |
|
27 |
26
|
snssd |
|
28 |
|
ssequn2 |
|
29 |
27 28
|
sylib |
|
30 |
15 29
|
eqtrid |
|
31 |
30
|
unieqd |
|
32 |
3 2
|
eqger |
|
33 |
10 32
|
syl |
|
34 |
19
|
a1i |
|
35 |
33 34
|
uniqs2 |
|
36 |
31 35
|
eqtrd |
|
37 |
14 36
|
eqtr3id |
|
38 |
13 37
|
eqtr3d |
|
39 |
|
difss |
|
40 |
39
|
unissi |
|
41 |
40 35
|
sseqtrid |
|
42 |
|
df-ne |
|
43 |
33
|
adantr |
|
44 |
|
simpr |
|
45 |
26
|
adantr |
|
46 |
43 44 45
|
qsdisj |
|
47 |
46
|
ord |
|
48 |
|
disj2 |
|
49 |
47 48
|
syl6ib |
|
50 |
42 49
|
syl5bi |
|
51 |
50
|
expimpd |
|
52 |
|
eldifsn |
|
53 |
|
velpw |
|
54 |
51 52 53
|
3imtr4g |
|
55 |
54
|
ssrdv |
|
56 |
|
sspwuni |
|
57 |
55 56
|
sylib |
|
58 |
|
disj2 |
|
59 |
57 58
|
sylibr |
|
60 |
|
uneqdifeq |
|
61 |
41 59 60
|
syl2anc |
|
62 |
38 61
|
mpbid |
|
63 |
9 62
|
eqtr3d |
|
64 |
|
topontop |
|
65 |
6 64
|
syl |
|
66 |
|
simpl3 |
|
67 |
|
diffi |
|
68 |
66 67
|
syl |
|
69 |
|
vex |
|
70 |
69
|
elqs |
|
71 |
|
simpll2 |
|
72 |
|
subgrcl |
|
73 |
71 72
|
syl |
|
74 |
3
|
subgss |
|
75 |
10 74
|
syl |
|
76 |
75
|
adantr |
|
77 |
|
simpr |
|
78 |
|
eqid |
|
79 |
3 2 78
|
eqglact |
|
80 |
73 76 77 79
|
syl3anc |
|
81 |
|
simplr |
|
82 |
|
eqid |
|
83 |
82 3 78 1
|
tgplacthmeo |
|
84 |
4 83
|
sylan |
|
85 |
75 8
|
sseqtrd |
|
86 |
85
|
adantr |
|
87 |
|
eqid |
|
88 |
87
|
hmeocld |
|
89 |
84 86 88
|
syl2anc |
|
90 |
81 89
|
mpbid |
|
91 |
80 90
|
eqeltrd |
|
92 |
|
eleq1 |
|
93 |
91 92
|
syl5ibrcom |
|
94 |
93
|
rexlimdva |
|
95 |
70 94
|
syl5bi |
|
96 |
95
|
ssrdv |
|
97 |
96
|
ssdifssd |
|
98 |
87
|
unicld |
|
99 |
65 68 97 98
|
syl3anc |
|
100 |
87
|
cldopn |
|
101 |
99 100
|
syl |
|
102 |
63 101
|
eqeltrrd |
|
103 |
102
|
ex |
|
104 |
1
|
opnsubg |
|
105 |
104
|
3expia |
|
106 |
105
|
3adant3 |
|
107 |
103 106
|
impbid |
|