Metamath Proof Explorer


Theorem cldsubg

Description: A subgroup of finite index is closed iff it is open. (Contributed by Mario Carneiro, 20-Sep-2015)

Ref Expression
Hypotheses subgntr.h J = TopOpen G
cldsubg.1 R = G ~ QG S
cldsubg.2 X = Base G
Assertion cldsubg G TopGrp S SubGrp G X / R Fin S Clsd J S J

Proof

Step Hyp Ref Expression
1 subgntr.h J = TopOpen G
2 cldsubg.1 R = G ~ QG S
3 cldsubg.2 X = Base G
4 simpl1 G TopGrp S SubGrp G X / R Fin S Clsd J G TopGrp
5 1 3 tgptopon G TopGrp J TopOn X
6 4 5 syl G TopGrp S SubGrp G X / R Fin S Clsd J J TopOn X
7 toponuni J TopOn X X = J
8 6 7 syl G TopGrp S SubGrp G X / R Fin S Clsd J X = J
9 8 difeq1d G TopGrp S SubGrp G X / R Fin S Clsd J X X / R S = J X / R S
10 simpl2 G TopGrp S SubGrp G X / R Fin S Clsd J S SubGrp G
11 unisng S SubGrp G S = S
12 10 11 syl G TopGrp S SubGrp G X / R Fin S Clsd J S = S
13 12 uneq2d G TopGrp S SubGrp G X / R Fin S Clsd J X / R S S = X / R S S
14 uniun X / R S S = X / R S S
15 undif1 X / R S S = X / R S
16 eqid 0 G = 0 G
17 3 2 16 eqgid S SubGrp G 0 G R = S
18 10 17 syl G TopGrp S SubGrp G X / R Fin S Clsd J 0 G R = S
19 2 ovexi R V
20 tgpgrp G TopGrp G Grp
21 4 20 syl G TopGrp S SubGrp G X / R Fin S Clsd J G Grp
22 3 16 grpidcl G Grp 0 G X
23 21 22 syl G TopGrp S SubGrp G X / R Fin S Clsd J 0 G X
24 ecelqsg R V 0 G X 0 G R X / R
25 19 23 24 sylancr G TopGrp S SubGrp G X / R Fin S Clsd J 0 G R X / R
26 18 25 eqeltrrd G TopGrp S SubGrp G X / R Fin S Clsd J S X / R
27 26 snssd G TopGrp S SubGrp G X / R Fin S Clsd J S X / R
28 ssequn2 S X / R X / R S = X / R
29 27 28 sylib G TopGrp S SubGrp G X / R Fin S Clsd J X / R S = X / R
30 15 29 eqtrid G TopGrp S SubGrp G X / R Fin S Clsd J X / R S S = X / R
31 30 unieqd G TopGrp S SubGrp G X / R Fin S Clsd J X / R S S = X / R
32 3 2 eqger S SubGrp G R Er X
33 10 32 syl G TopGrp S SubGrp G X / R Fin S Clsd J R Er X
34 19 a1i G TopGrp S SubGrp G X / R Fin S Clsd J R V
35 33 34 uniqs2 G TopGrp S SubGrp G X / R Fin S Clsd J X / R = X
36 31 35 eqtrd G TopGrp S SubGrp G X / R Fin S Clsd J X / R S S = X
37 14 36 eqtr3id G TopGrp S SubGrp G X / R Fin S Clsd J X / R S S = X
38 13 37 eqtr3d G TopGrp S SubGrp G X / R Fin S Clsd J X / R S S = X
39 difss X / R S X / R
40 39 unissi X / R S X / R
41 40 35 sseqtrid G TopGrp S SubGrp G X / R Fin S Clsd J X / R S X
42 df-ne x S ¬ x = S
43 33 adantr G TopGrp S SubGrp G X / R Fin S Clsd J x X / R R Er X
44 simpr G TopGrp S SubGrp G X / R Fin S Clsd J x X / R x X / R
45 26 adantr G TopGrp S SubGrp G X / R Fin S Clsd J x X / R S X / R
46 43 44 45 qsdisj G TopGrp S SubGrp G X / R Fin S Clsd J x X / R x = S x S =
47 46 ord G TopGrp S SubGrp G X / R Fin S Clsd J x X / R ¬ x = S x S =
48 disj2 x S = x V S
49 47 48 syl6ib G TopGrp S SubGrp G X / R Fin S Clsd J x X / R ¬ x = S x V S
50 42 49 syl5bi G TopGrp S SubGrp G X / R Fin S Clsd J x X / R x S x V S
51 50 expimpd G TopGrp S SubGrp G X / R Fin S Clsd J x X / R x S x V S
52 eldifsn x X / R S x X / R x S
53 velpw x 𝒫 V S x V S
54 51 52 53 3imtr4g G TopGrp S SubGrp G X / R Fin S Clsd J x X / R S x 𝒫 V S
55 54 ssrdv G TopGrp S SubGrp G X / R Fin S Clsd J X / R S 𝒫 V S
56 sspwuni X / R S 𝒫 V S X / R S V S
57 55 56 sylib G TopGrp S SubGrp G X / R Fin S Clsd J X / R S V S
58 disj2 X / R S S = X / R S V S
59 57 58 sylibr G TopGrp S SubGrp G X / R Fin S Clsd J X / R S S =
60 uneqdifeq X / R S X X / R S S = X / R S S = X X X / R S = S
61 41 59 60 syl2anc G TopGrp S SubGrp G X / R Fin S Clsd J X / R S S = X X X / R S = S
62 38 61 mpbid G TopGrp S SubGrp G X / R Fin S Clsd J X X / R S = S
63 9 62 eqtr3d G TopGrp S SubGrp G X / R Fin S Clsd J J X / R S = S
64 topontop J TopOn X J Top
65 6 64 syl G TopGrp S SubGrp G X / R Fin S Clsd J J Top
66 simpl3 G TopGrp S SubGrp G X / R Fin S Clsd J X / R Fin
67 diffi X / R Fin X / R S Fin
68 66 67 syl G TopGrp S SubGrp G X / R Fin S Clsd J X / R S Fin
69 vex x V
70 69 elqs x X / R y X x = y R
71 simpll2 G TopGrp S SubGrp G X / R Fin S Clsd J y X S SubGrp G
72 subgrcl S SubGrp G G Grp
73 71 72 syl G TopGrp S SubGrp G X / R Fin S Clsd J y X G Grp
74 3 subgss S SubGrp G S X
75 10 74 syl G TopGrp S SubGrp G X / R Fin S Clsd J S X
76 75 adantr G TopGrp S SubGrp G X / R Fin S Clsd J y X S X
77 simpr G TopGrp S SubGrp G X / R Fin S Clsd J y X y X
78 eqid + G = + G
79 3 2 78 eqglact G Grp S X y X y R = z X y + G z S
80 73 76 77 79 syl3anc G TopGrp S SubGrp G X / R Fin S Clsd J y X y R = z X y + G z S
81 simplr G TopGrp S SubGrp G X / R Fin S Clsd J y X S Clsd J
82 eqid z X y + G z = z X y + G z
83 82 3 78 1 tgplacthmeo G TopGrp y X z X y + G z J Homeo J
84 4 83 sylan G TopGrp S SubGrp G X / R Fin S Clsd J y X z X y + G z J Homeo J
85 75 8 sseqtrd G TopGrp S SubGrp G X / R Fin S Clsd J S J
86 85 adantr G TopGrp S SubGrp G X / R Fin S Clsd J y X S J
87 eqid J = J
88 87 hmeocld z X y + G z J Homeo J S J S Clsd J z X y + G z S Clsd J
89 84 86 88 syl2anc G TopGrp S SubGrp G X / R Fin S Clsd J y X S Clsd J z X y + G z S Clsd J
90 81 89 mpbid G TopGrp S SubGrp G X / R Fin S Clsd J y X z X y + G z S Clsd J
91 80 90 eqeltrd G TopGrp S SubGrp G X / R Fin S Clsd J y X y R Clsd J
92 eleq1 x = y R x Clsd J y R Clsd J
93 91 92 syl5ibrcom G TopGrp S SubGrp G X / R Fin S Clsd J y X x = y R x Clsd J
94 93 rexlimdva G TopGrp S SubGrp G X / R Fin S Clsd J y X x = y R x Clsd J
95 70 94 syl5bi G TopGrp S SubGrp G X / R Fin S Clsd J x X / R x Clsd J
96 95 ssrdv G TopGrp S SubGrp G X / R Fin S Clsd J X / R Clsd J
97 96 ssdifssd G TopGrp S SubGrp G X / R Fin S Clsd J X / R S Clsd J
98 87 unicld J Top X / R S Fin X / R S Clsd J X / R S Clsd J
99 65 68 97 98 syl3anc G TopGrp S SubGrp G X / R Fin S Clsd J X / R S Clsd J
100 87 cldopn X / R S Clsd J J X / R S J
101 99 100 syl G TopGrp S SubGrp G X / R Fin S Clsd J J X / R S J
102 63 101 eqeltrrd G TopGrp S SubGrp G X / R Fin S Clsd J S J
103 102 ex G TopGrp S SubGrp G X / R Fin S Clsd J S J
104 1 opnsubg G TopGrp S SubGrp G S J S Clsd J
105 104 3expia G TopGrp S SubGrp G S J S Clsd J
106 105 3adant3 G TopGrp S SubGrp G X / R Fin S J S Clsd J
107 103 106 impbid G TopGrp S SubGrp G X / R Fin S Clsd J S J