Metamath Proof Explorer


Theorem cldsubg

Description: A subgroup of finite index is closed iff it is open. (Contributed by Mario Carneiro, 20-Sep-2015)

Ref Expression
Hypotheses subgntr.h J=TopOpenG
cldsubg.1 R=G~QGS
cldsubg.2 X=BaseG
Assertion cldsubg GTopGrpSSubGrpGX/RFinSClsdJSJ

Proof

Step Hyp Ref Expression
1 subgntr.h J=TopOpenG
2 cldsubg.1 R=G~QGS
3 cldsubg.2 X=BaseG
4 simpl1 GTopGrpSSubGrpGX/RFinSClsdJGTopGrp
5 1 3 tgptopon GTopGrpJTopOnX
6 4 5 syl GTopGrpSSubGrpGX/RFinSClsdJJTopOnX
7 toponuni JTopOnXX=J
8 6 7 syl GTopGrpSSubGrpGX/RFinSClsdJX=J
9 8 difeq1d GTopGrpSSubGrpGX/RFinSClsdJXX/RS=JX/RS
10 simpl2 GTopGrpSSubGrpGX/RFinSClsdJSSubGrpG
11 unisng SSubGrpGS=S
12 10 11 syl GTopGrpSSubGrpGX/RFinSClsdJS=S
13 12 uneq2d GTopGrpSSubGrpGX/RFinSClsdJX/RSS=X/RSS
14 uniun X/RSS=X/RSS
15 undif1 X/RSS=X/RS
16 eqid 0G=0G
17 3 2 16 eqgid SSubGrpG0GR=S
18 10 17 syl GTopGrpSSubGrpGX/RFinSClsdJ0GR=S
19 2 ovexi RV
20 tgpgrp GTopGrpGGrp
21 4 20 syl GTopGrpSSubGrpGX/RFinSClsdJGGrp
22 3 16 grpidcl GGrp0GX
23 21 22 syl GTopGrpSSubGrpGX/RFinSClsdJ0GX
24 ecelqsg RV0GX0GRX/R
25 19 23 24 sylancr GTopGrpSSubGrpGX/RFinSClsdJ0GRX/R
26 18 25 eqeltrrd GTopGrpSSubGrpGX/RFinSClsdJSX/R
27 26 snssd GTopGrpSSubGrpGX/RFinSClsdJSX/R
28 ssequn2 SX/RX/RS=X/R
29 27 28 sylib GTopGrpSSubGrpGX/RFinSClsdJX/RS=X/R
30 15 29 eqtrid GTopGrpSSubGrpGX/RFinSClsdJX/RSS=X/R
31 30 unieqd GTopGrpSSubGrpGX/RFinSClsdJX/RSS=X/R
32 3 2 eqger SSubGrpGRErX
33 10 32 syl GTopGrpSSubGrpGX/RFinSClsdJRErX
34 19 a1i GTopGrpSSubGrpGX/RFinSClsdJRV
35 33 34 uniqs2 GTopGrpSSubGrpGX/RFinSClsdJX/R=X
36 31 35 eqtrd GTopGrpSSubGrpGX/RFinSClsdJX/RSS=X
37 14 36 eqtr3id GTopGrpSSubGrpGX/RFinSClsdJX/RSS=X
38 13 37 eqtr3d GTopGrpSSubGrpGX/RFinSClsdJX/RSS=X
39 difss X/RSX/R
40 39 unissi X/RSX/R
41 40 35 sseqtrid GTopGrpSSubGrpGX/RFinSClsdJX/RSX
42 df-ne xS¬x=S
43 33 adantr GTopGrpSSubGrpGX/RFinSClsdJxX/RRErX
44 simpr GTopGrpSSubGrpGX/RFinSClsdJxX/RxX/R
45 26 adantr GTopGrpSSubGrpGX/RFinSClsdJxX/RSX/R
46 43 44 45 qsdisj GTopGrpSSubGrpGX/RFinSClsdJxX/Rx=SxS=
47 46 ord GTopGrpSSubGrpGX/RFinSClsdJxX/R¬x=SxS=
48 disj2 xS=xVS
49 47 48 imbitrdi GTopGrpSSubGrpGX/RFinSClsdJxX/R¬x=SxVS
50 42 49 biimtrid GTopGrpSSubGrpGX/RFinSClsdJxX/RxSxVS
51 50 expimpd GTopGrpSSubGrpGX/RFinSClsdJxX/RxSxVS
52 eldifsn xX/RSxX/RxS
53 velpw x𝒫VSxVS
54 51 52 53 3imtr4g GTopGrpSSubGrpGX/RFinSClsdJxX/RSx𝒫VS
55 54 ssrdv GTopGrpSSubGrpGX/RFinSClsdJX/RS𝒫VS
56 sspwuni X/RS𝒫VSX/RSVS
57 55 56 sylib GTopGrpSSubGrpGX/RFinSClsdJX/RSVS
58 disj2 X/RSS=X/RSVS
59 57 58 sylibr GTopGrpSSubGrpGX/RFinSClsdJX/RSS=
60 uneqdifeq X/RSXX/RSS=X/RSS=XXX/RS=S
61 41 59 60 syl2anc GTopGrpSSubGrpGX/RFinSClsdJX/RSS=XXX/RS=S
62 38 61 mpbid GTopGrpSSubGrpGX/RFinSClsdJXX/RS=S
63 9 62 eqtr3d GTopGrpSSubGrpGX/RFinSClsdJJX/RS=S
64 topontop JTopOnXJTop
65 6 64 syl GTopGrpSSubGrpGX/RFinSClsdJJTop
66 simpl3 GTopGrpSSubGrpGX/RFinSClsdJX/RFin
67 diffi X/RFinX/RSFin
68 66 67 syl GTopGrpSSubGrpGX/RFinSClsdJX/RSFin
69 vex xV
70 69 elqs xX/RyXx=yR
71 simpll2 GTopGrpSSubGrpGX/RFinSClsdJyXSSubGrpG
72 subgrcl SSubGrpGGGrp
73 71 72 syl GTopGrpSSubGrpGX/RFinSClsdJyXGGrp
74 3 subgss SSubGrpGSX
75 10 74 syl GTopGrpSSubGrpGX/RFinSClsdJSX
76 75 adantr GTopGrpSSubGrpGX/RFinSClsdJyXSX
77 simpr GTopGrpSSubGrpGX/RFinSClsdJyXyX
78 eqid +G=+G
79 3 2 78 eqglact GGrpSXyXyR=zXy+GzS
80 73 76 77 79 syl3anc GTopGrpSSubGrpGX/RFinSClsdJyXyR=zXy+GzS
81 simplr GTopGrpSSubGrpGX/RFinSClsdJyXSClsdJ
82 eqid zXy+Gz=zXy+Gz
83 82 3 78 1 tgplacthmeo GTopGrpyXzXy+GzJHomeoJ
84 4 83 sylan GTopGrpSSubGrpGX/RFinSClsdJyXzXy+GzJHomeoJ
85 75 8 sseqtrd GTopGrpSSubGrpGX/RFinSClsdJSJ
86 85 adantr GTopGrpSSubGrpGX/RFinSClsdJyXSJ
87 eqid J=J
88 87 hmeocld zXy+GzJHomeoJSJSClsdJzXy+GzSClsdJ
89 84 86 88 syl2anc GTopGrpSSubGrpGX/RFinSClsdJyXSClsdJzXy+GzSClsdJ
90 81 89 mpbid GTopGrpSSubGrpGX/RFinSClsdJyXzXy+GzSClsdJ
91 80 90 eqeltrd GTopGrpSSubGrpGX/RFinSClsdJyXyRClsdJ
92 eleq1 x=yRxClsdJyRClsdJ
93 91 92 syl5ibrcom GTopGrpSSubGrpGX/RFinSClsdJyXx=yRxClsdJ
94 93 rexlimdva GTopGrpSSubGrpGX/RFinSClsdJyXx=yRxClsdJ
95 70 94 biimtrid GTopGrpSSubGrpGX/RFinSClsdJxX/RxClsdJ
96 95 ssrdv GTopGrpSSubGrpGX/RFinSClsdJX/RClsdJ
97 96 ssdifssd GTopGrpSSubGrpGX/RFinSClsdJX/RSClsdJ
98 87 unicld JTopX/RSFinX/RSClsdJX/RSClsdJ
99 65 68 97 98 syl3anc GTopGrpSSubGrpGX/RFinSClsdJX/RSClsdJ
100 87 cldopn X/RSClsdJJX/RSJ
101 99 100 syl GTopGrpSSubGrpGX/RFinSClsdJJX/RSJ
102 63 101 eqeltrrd GTopGrpSSubGrpGX/RFinSClsdJSJ
103 102 ex GTopGrpSSubGrpGX/RFinSClsdJSJ
104 1 opnsubg GTopGrpSSubGrpGSJSClsdJ
105 104 3expia GTopGrpSSubGrpGSJSClsdJ
106 105 3adant3 GTopGrpSSubGrpGX/RFinSJSClsdJ
107 103 106 impbid GTopGrpSSubGrpGX/RFinSClsdJSJ