Metamath Proof Explorer


Theorem unicld

Description: A finite union of closed sets is closed. (Contributed by Mario Carneiro, 19-Sep-2015)

Ref Expression
Hypothesis clscld.1 X=J
Assertion unicld JTopAFinAClsdJAClsdJ

Proof

Step Hyp Ref Expression
1 clscld.1 X=J
2 uniiun A=xAx
3 dfss3 AClsdJxAxClsdJ
4 1 iuncld JTopAFinxAxClsdJxAxClsdJ
5 3 4 syl3an3b JTopAFinAClsdJxAxClsdJ
6 2 5 eqeltrid JTopAFinAClsdJAClsdJ