Metamath Proof Explorer


Theorem iuncld

Description: A finite indexed union of closed sets is closed. (Contributed by Mario Carneiro, 19-Sep-2015)

Ref Expression
Hypothesis clscld.1 X = J
Assertion iuncld J Top A Fin x A B Clsd J x A B Clsd J

Proof

Step Hyp Ref Expression
1 clscld.1 X = J
2 difin X X x A X B = X x A X B
3 iundif2 x A X X B = X x A X B
4 2 3 eqtr4i X X x A X B = x A X X B
5 1 cldss B Clsd J B X
6 dfss4 B X X X B = B
7 5 6 sylib B Clsd J X X B = B
8 7 ralimi x A B Clsd J x A X X B = B
9 8 3ad2ant3 J Top A Fin x A B Clsd J x A X X B = B
10 iuneq2 x A X X B = B x A X X B = x A B
11 9 10 syl J Top A Fin x A B Clsd J x A X X B = x A B
12 4 11 syl5eq J Top A Fin x A B Clsd J X X x A X B = x A B
13 simp1 J Top A Fin x A B Clsd J J Top
14 1 cldopn B Clsd J X B J
15 14 ralimi x A B Clsd J x A X B J
16 1 riinopn J Top A Fin x A X B J X x A X B J
17 15 16 syl3an3 J Top A Fin x A B Clsd J X x A X B J
18 1 opncld J Top X x A X B J X X x A X B Clsd J
19 13 17 18 syl2anc J Top A Fin x A B Clsd J X X x A X B Clsd J
20 12 19 eqeltrrd J Top A Fin x A B Clsd J x A B Clsd J