Metamath Proof Explorer


Theorem iuncld

Description: A finite indexed union of closed sets is closed. (Contributed by Mario Carneiro, 19-Sep-2015)

Ref Expression
Hypothesis clscld.1 X=J
Assertion iuncld JTopAFinxABClsdJxABClsdJ

Proof

Step Hyp Ref Expression
1 clscld.1 X=J
2 difin XXxAXB=XxAXB
3 iundif2 xAXXB=XxAXB
4 2 3 eqtr4i XXxAXB=xAXXB
5 1 cldss BClsdJBX
6 dfss4 BXXXB=B
7 5 6 sylib BClsdJXXB=B
8 7 ralimi xABClsdJxAXXB=B
9 8 3ad2ant3 JTopAFinxABClsdJxAXXB=B
10 iuneq2 xAXXB=BxAXXB=xAB
11 9 10 syl JTopAFinxABClsdJxAXXB=xAB
12 4 11 eqtrid JTopAFinxABClsdJXXxAXB=xAB
13 simp1 JTopAFinxABClsdJJTop
14 1 cldopn BClsdJXBJ
15 14 ralimi xABClsdJxAXBJ
16 1 riinopn JTopAFinxAXBJXxAXBJ
17 15 16 syl3an3 JTopAFinxABClsdJXxAXBJ
18 1 opncld JTopXxAXBJXXxAXBClsdJ
19 13 17 18 syl2anc JTopAFinxABClsdJXXxAXBClsdJ
20 12 19 eqeltrrd JTopAFinxABClsdJxABClsdJ