Metamath Proof Explorer


Theorem iuncld

Description: A finite indexed union of closed sets is closed. (Contributed by Mario Carneiro, 19-Sep-2015)

Ref Expression
Hypothesis clscld.1 𝑋 = 𝐽
Assertion iuncld ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑥𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) )

Proof

Step Hyp Ref Expression
1 clscld.1 𝑋 = 𝐽
2 difin ( 𝑋 ∖ ( 𝑋 𝑥𝐴 ( 𝑋𝐵 ) ) ) = ( 𝑋 𝑥𝐴 ( 𝑋𝐵 ) )
3 iundif2 𝑥𝐴 ( 𝑋 ∖ ( 𝑋𝐵 ) ) = ( 𝑋 𝑥𝐴 ( 𝑋𝐵 ) )
4 2 3 eqtr4i ( 𝑋 ∖ ( 𝑋 𝑥𝐴 ( 𝑋𝐵 ) ) ) = 𝑥𝐴 ( 𝑋 ∖ ( 𝑋𝐵 ) )
5 1 cldss ( 𝐵 ∈ ( Clsd ‘ 𝐽 ) → 𝐵𝑋 )
6 dfss4 ( 𝐵𝑋 ↔ ( 𝑋 ∖ ( 𝑋𝐵 ) ) = 𝐵 )
7 5 6 sylib ( 𝐵 ∈ ( Clsd ‘ 𝐽 ) → ( 𝑋 ∖ ( 𝑋𝐵 ) ) = 𝐵 )
8 7 ralimi ( ∀ 𝑥𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) → ∀ 𝑥𝐴 ( 𝑋 ∖ ( 𝑋𝐵 ) ) = 𝐵 )
9 8 3ad2ant3 ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → ∀ 𝑥𝐴 ( 𝑋 ∖ ( 𝑋𝐵 ) ) = 𝐵 )
10 iuneq2 ( ∀ 𝑥𝐴 ( 𝑋 ∖ ( 𝑋𝐵 ) ) = 𝐵 𝑥𝐴 ( 𝑋 ∖ ( 𝑋𝐵 ) ) = 𝑥𝐴 𝐵 )
11 9 10 syl ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑥𝐴 ( 𝑋 ∖ ( 𝑋𝐵 ) ) = 𝑥𝐴 𝐵 )
12 4 11 eqtrid ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑋 ∖ ( 𝑋 𝑥𝐴 ( 𝑋𝐵 ) ) ) = 𝑥𝐴 𝐵 )
13 simp1 ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → 𝐽 ∈ Top )
14 1 cldopn ( 𝐵 ∈ ( Clsd ‘ 𝐽 ) → ( 𝑋𝐵 ) ∈ 𝐽 )
15 14 ralimi ( ∀ 𝑥𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) → ∀ 𝑥𝐴 ( 𝑋𝐵 ) ∈ 𝐽 )
16 1 riinopn ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥𝐴 ( 𝑋𝐵 ) ∈ 𝐽 ) → ( 𝑋 𝑥𝐴 ( 𝑋𝐵 ) ) ∈ 𝐽 )
17 15 16 syl3an3 ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑋 𝑥𝐴 ( 𝑋𝐵 ) ) ∈ 𝐽 )
18 1 opncld ( ( 𝐽 ∈ Top ∧ ( 𝑋 𝑥𝐴 ( 𝑋𝐵 ) ) ∈ 𝐽 ) → ( 𝑋 ∖ ( 𝑋 𝑥𝐴 ( 𝑋𝐵 ) ) ) ∈ ( Clsd ‘ 𝐽 ) )
19 13 17 18 syl2anc ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑋 ∖ ( 𝑋 𝑥𝐴 ( 𝑋𝐵 ) ) ) ∈ ( Clsd ‘ 𝐽 ) )
20 12 19 eqeltrrd ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀ 𝑥𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑥𝐴 𝐵 ∈ ( Clsd ‘ 𝐽 ) )