| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eldif |
⊢ ( 𝑦 ∈ ( 𝐵 ∖ 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐶 ) ) |
| 2 |
1
|
rexbii |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∖ 𝐶 ) ↔ ∃ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐶 ) ) |
| 3 |
|
r19.42v |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 ∧ ∃ 𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝐶 ) ) |
| 4 |
|
rexnal |
⊢ ( ∃ 𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝐶 ↔ ¬ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ) |
| 5 |
|
eliin |
⊢ ( 𝑦 ∈ V → ( 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ) ) |
| 6 |
5
|
elv |
⊢ ( 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ) |
| 7 |
4 6
|
xchbinxr |
⊢ ( ∃ 𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝐶 ↔ ¬ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶 ) |
| 8 |
7
|
anbi2i |
⊢ ( ( 𝑦 ∈ 𝐵 ∧ ∃ 𝑥 ∈ 𝐴 ¬ 𝑦 ∈ 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶 ) ) |
| 9 |
2 3 8
|
3bitri |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∖ 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶 ) ) |
| 10 |
|
eliun |
⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝐵 ∖ 𝐶 ) ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∖ 𝐶 ) ) |
| 11 |
|
eldif |
⊢ ( 𝑦 ∈ ( 𝐵 ∖ ∩ 𝑥 ∈ 𝐴 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶 ) ) |
| 12 |
9 10 11
|
3bitr4i |
⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝐵 ∖ 𝐶 ) ↔ 𝑦 ∈ ( 𝐵 ∖ ∩ 𝑥 ∈ 𝐴 𝐶 ) ) |
| 13 |
12
|
eqriv |
⊢ ∪ 𝑥 ∈ 𝐴 ( 𝐵 ∖ 𝐶 ) = ( 𝐵 ∖ ∩ 𝑥 ∈ 𝐴 𝐶 ) |