| Step |
Hyp |
Ref |
Expression |
| 1 |
|
r19.27zv |
⊢ ( 𝐴 ≠ ∅ → ( ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐶 ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐶 ) ) ) |
| 2 |
|
eldif |
⊢ ( 𝑦 ∈ ( 𝐵 ∖ 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐶 ) ) |
| 3 |
2
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∖ 𝐶 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐶 ) ) |
| 4 |
|
eliin |
⊢ ( 𝑦 ∈ V → ( 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) ) |
| 5 |
4
|
elv |
⊢ ( 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) |
| 6 |
5
|
anbi1i |
⊢ ( ( 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ∧ ¬ 𝑦 ∈ 𝐶 ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐶 ) ) |
| 7 |
1 3 6
|
3bitr4g |
⊢ ( 𝐴 ≠ ∅ → ( ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∖ 𝐶 ) ↔ ( 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ∧ ¬ 𝑦 ∈ 𝐶 ) ) ) |
| 8 |
|
eliin |
⊢ ( 𝑦 ∈ V → ( 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 ( 𝐵 ∖ 𝐶 ) ↔ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∖ 𝐶 ) ) ) |
| 9 |
8
|
elv |
⊢ ( 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 ( 𝐵 ∖ 𝐶 ) ↔ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∖ 𝐶 ) ) |
| 10 |
|
eldif |
⊢ ( 𝑦 ∈ ( ∩ 𝑥 ∈ 𝐴 𝐵 ∖ 𝐶 ) ↔ ( 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ∧ ¬ 𝑦 ∈ 𝐶 ) ) |
| 11 |
7 9 10
|
3bitr4g |
⊢ ( 𝐴 ≠ ∅ → ( 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 ( 𝐵 ∖ 𝐶 ) ↔ 𝑦 ∈ ( ∩ 𝑥 ∈ 𝐴 𝐵 ∖ 𝐶 ) ) ) |
| 12 |
11
|
eqrdv |
⊢ ( 𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 ( 𝐵 ∖ 𝐶 ) = ( ∩ 𝑥 ∈ 𝐴 𝐵 ∖ 𝐶 ) ) |