Metamath Proof Explorer


Theorem iundif2

Description: Indexed union of class difference. Generalization of half of theorem "De Morgan's laws" in Enderton p. 31. Use intiin to recover Enderton's theorem. (Contributed by NM, 19-Aug-2004)

Ref Expression
Assertion iundif2 xABC=BxAC

Proof

Step Hyp Ref Expression
1 eldif yBCyB¬yC
2 1 rexbii xAyBCxAyB¬yC
3 r19.42v xAyB¬yCyBxA¬yC
4 rexnal xA¬yC¬xAyC
5 eliin yVyxACxAyC
6 5 elv yxACxAyC
7 4 6 xchbinxr xA¬yC¬yxAC
8 7 anbi2i yBxA¬yCyB¬yxAC
9 2 3 8 3bitri xAyBCyB¬yxAC
10 eliun yxABCxAyBC
11 eldif yBxACyB¬yxAC
12 9 10 11 3bitr4i yxABCyBxAC
13 12 eqriv xABC=BxAC