Metamath Proof Explorer


Theorem tgpconncompeqg

Description: The connected component containing A is the left coset of the identity component containing A . (Contributed by Mario Carneiro, 17-Sep-2015)

Ref Expression
Hypotheses tgpconncomp.x X = Base G
tgpconncomp.z 0 ˙ = 0 G
tgpconncomp.j J = TopOpen G
tgpconncomp.s S = x 𝒫 X | 0 ˙ x J 𝑡 x Conn
tgpconncompeqg.r ˙ = G ~ QG S
Assertion tgpconncompeqg G TopGrp A X A ˙ = x 𝒫 X | A x J 𝑡 x Conn

Proof

Step Hyp Ref Expression
1 tgpconncomp.x X = Base G
2 tgpconncomp.z 0 ˙ = 0 G
3 tgpconncomp.j J = TopOpen G
4 tgpconncomp.s S = x 𝒫 X | 0 ˙ x J 𝑡 x Conn
5 tgpconncompeqg.r ˙ = G ~ QG S
6 dfec2 A X A ˙ = z | A ˙ z
7 6 adantl G TopGrp A X A ˙ = z | A ˙ z
8 ssrab2 x 𝒫 X | 0 ˙ x J 𝑡 x Conn 𝒫 X
9 sspwuni x 𝒫 X | 0 ˙ x J 𝑡 x Conn 𝒫 X x 𝒫 X | 0 ˙ x J 𝑡 x Conn X
10 8 9 mpbi x 𝒫 X | 0 ˙ x J 𝑡 x Conn X
11 4 10 eqsstri S X
12 11 a1i G TopGrp A X S X
13 eqid inv g G = inv g G
14 eqid + G = + G
15 1 13 14 5 eqgval G TopGrp S X A ˙ z A X z X inv g G A + G z S
16 12 15 syldan G TopGrp A X A ˙ z A X z X inv g G A + G z S
17 simp2 A X z X inv g G A + G z S z X
18 16 17 syl6bi G TopGrp A X A ˙ z z X
19 18 abssdv G TopGrp A X z | A ˙ z X
20 7 19 eqsstrd G TopGrp A X A ˙ X
21 simpr G TopGrp A X A X
22 tgpgrp G TopGrp G Grp
23 1 14 2 13 grplinv G Grp A X inv g G A + G A = 0 ˙
24 22 23 sylan G TopGrp A X inv g G A + G A = 0 ˙
25 3 1 tgptopon G TopGrp J TopOn X
26 25 adantr G TopGrp A X J TopOn X
27 22 adantr G TopGrp A X G Grp
28 1 2 grpidcl G Grp 0 ˙ X
29 27 28 syl G TopGrp A X 0 ˙ X
30 4 conncompid J TopOn X 0 ˙ X 0 ˙ S
31 26 29 30 syl2anc G TopGrp A X 0 ˙ S
32 24 31 eqeltrd G TopGrp A X inv g G A + G A S
33 1 13 14 5 eqgval G TopGrp S X A ˙ A A X A X inv g G A + G A S
34 12 33 syldan G TopGrp A X A ˙ A A X A X inv g G A + G A S
35 21 21 32 34 mpbir3and G TopGrp A X A ˙ A
36 elecg A X A X A A ˙ A ˙ A
37 21 21 36 syl2anc G TopGrp A X A A ˙ A ˙ A
38 35 37 mpbird G TopGrp A X A A ˙
39 1 5 14 eqglact G Grp S X A X A ˙ = z X A + G z S
40 11 39 mp3an2 G Grp A X A ˙ = z X A + G z S
41 22 40 sylan G TopGrp A X A ˙ = z X A + G z S
42 41 oveq2d G TopGrp A X J 𝑡 A ˙ = J 𝑡 z X A + G z S
43 eqid J = J
44 eqid z X A + G z = z X A + G z
45 44 1 14 3 tgplacthmeo G TopGrp A X z X A + G z J Homeo J
46 hmeocn z X A + G z J Homeo J z X A + G z J Cn J
47 45 46 syl G TopGrp A X z X A + G z J Cn J
48 toponuni J TopOn X X = J
49 26 48 syl G TopGrp A X X = J
50 11 49 sseqtrid G TopGrp A X S J
51 4 conncompconn J TopOn X 0 ˙ X J 𝑡 S Conn
52 26 29 51 syl2anc G TopGrp A X J 𝑡 S Conn
53 43 47 50 52 connima G TopGrp A X J 𝑡 z X A + G z S Conn
54 42 53 eqeltrd G TopGrp A X J 𝑡 A ˙ Conn
55 eqid x 𝒫 X | A x J 𝑡 x Conn = x 𝒫 X | A x J 𝑡 x Conn
56 55 conncompss A ˙ X A A ˙ J 𝑡 A ˙ Conn A ˙ x 𝒫 X | A x J 𝑡 x Conn
57 20 38 54 56 syl3anc G TopGrp A X A ˙ x 𝒫 X | A x J 𝑡 x Conn
58 elpwi y 𝒫 X y X
59 44 mptpreima z X A + G z -1 y = z X | A + G z y
60 59 ssrab3 z X A + G z -1 y X
61 29 adantr G TopGrp A X y X A y J 𝑡 y Conn 0 ˙ X
62 1 14 2 grprid G Grp A X A + G 0 ˙ = A
63 22 62 sylan G TopGrp A X A + G 0 ˙ = A
64 63 adantr G TopGrp A X y X A y J 𝑡 y Conn A + G 0 ˙ = A
65 simprrl G TopGrp A X y X A y J 𝑡 y Conn A y
66 64 65 eqeltrd G TopGrp A X y X A y J 𝑡 y Conn A + G 0 ˙ y
67 oveq2 z = 0 ˙ A + G z = A + G 0 ˙
68 67 eleq1d z = 0 ˙ A + G z y A + G 0 ˙ y
69 68 59 elrab2 0 ˙ z X A + G z -1 y 0 ˙ X A + G 0 ˙ y
70 61 66 69 sylanbrc G TopGrp A X y X A y J 𝑡 y Conn 0 ˙ z X A + G z -1 y
71 hmeocnvcn z X A + G z J Homeo J z X A + G z -1 J Cn J
72 45 71 syl G TopGrp A X z X A + G z -1 J Cn J
73 72 adantr G TopGrp A X y X A y J 𝑡 y Conn z X A + G z -1 J Cn J
74 simprl G TopGrp A X y X A y J 𝑡 y Conn y X
75 49 adantr G TopGrp A X y X A y J 𝑡 y Conn X = J
76 74 75 sseqtrd G TopGrp A X y X A y J 𝑡 y Conn y J
77 simprrr G TopGrp A X y X A y J 𝑡 y Conn J 𝑡 y Conn
78 43 73 76 77 connima G TopGrp A X y X A y J 𝑡 y Conn J 𝑡 z X A + G z -1 y Conn
79 4 conncompss z X A + G z -1 y X 0 ˙ z X A + G z -1 y J 𝑡 z X A + G z -1 y Conn z X A + G z -1 y S
80 60 70 78 79 mp3an2i G TopGrp A X y X A y J 𝑡 y Conn z X A + G z -1 y S
81 eqid g X z X g + G z = g X z X g + G z
82 81 1 14 13 grplactcnv G Grp A X g X z X g + G z A : X 1-1 onto X g X z X g + G z A -1 = g X z X g + G z inv g G A
83 22 82 sylan G TopGrp A X g X z X g + G z A : X 1-1 onto X g X z X g + G z A -1 = g X z X g + G z inv g G A
84 83 simpld G TopGrp A X g X z X g + G z A : X 1-1 onto X
85 81 1 grplactfval A X g X z X g + G z A = z X A + G z
86 85 adantl G TopGrp A X g X z X g + G z A = z X A + G z
87 f1oeq1 g X z X g + G z A = z X A + G z g X z X g + G z A : X 1-1 onto X z X A + G z : X 1-1 onto X
88 86 87 syl G TopGrp A X g X z X g + G z A : X 1-1 onto X z X A + G z : X 1-1 onto X
89 84 88 mpbid G TopGrp A X z X A + G z : X 1-1 onto X
90 89 adantr G TopGrp A X y X A y J 𝑡 y Conn z X A + G z : X 1-1 onto X
91 f1ocnv z X A + G z : X 1-1 onto X z X A + G z -1 : X 1-1 onto X
92 f1ofun z X A + G z -1 : X 1-1 onto X Fun z X A + G z -1
93 90 91 92 3syl G TopGrp A X y X A y J 𝑡 y Conn Fun z X A + G z -1
94 f1odm z X A + G z -1 : X 1-1 onto X dom z X A + G z -1 = X
95 90 91 94 3syl G TopGrp A X y X A y J 𝑡 y Conn dom z X A + G z -1 = X
96 74 95 sseqtrrd G TopGrp A X y X A y J 𝑡 y Conn y dom z X A + G z -1
97 funimass3 Fun z X A + G z -1 y dom z X A + G z -1 z X A + G z -1 y S y z X A + G z -1 -1 S
98 93 96 97 syl2anc G TopGrp A X y X A y J 𝑡 y Conn z X A + G z -1 y S y z X A + G z -1 -1 S
99 80 98 mpbid G TopGrp A X y X A y J 𝑡 y Conn y z X A + G z -1 -1 S
100 41 adantr G TopGrp A X y X A y J 𝑡 y Conn A ˙ = z X A + G z S
101 imacnvcnv z X A + G z -1 -1 S = z X A + G z S
102 100 101 eqtr4di G TopGrp A X y X A y J 𝑡 y Conn A ˙ = z X A + G z -1 -1 S
103 99 102 sseqtrrd G TopGrp A X y X A y J 𝑡 y Conn y A ˙
104 103 expr G TopGrp A X y X A y J 𝑡 y Conn y A ˙
105 58 104 sylan2 G TopGrp A X y 𝒫 X A y J 𝑡 y Conn y A ˙
106 105 ralrimiva G TopGrp A X y 𝒫 X A y J 𝑡 y Conn y A ˙
107 eleq2w x = y A x A y
108 oveq2 x = y J 𝑡 x = J 𝑡 y
109 108 eleq1d x = y J 𝑡 x Conn J 𝑡 y Conn
110 107 109 anbi12d x = y A x J 𝑡 x Conn A y J 𝑡 y Conn
111 110 ralrab y x 𝒫 X | A x J 𝑡 x Conn y A ˙ y 𝒫 X A y J 𝑡 y Conn y A ˙
112 106 111 sylibr G TopGrp A X y x 𝒫 X | A x J 𝑡 x Conn y A ˙
113 unissb x 𝒫 X | A x J 𝑡 x Conn A ˙ y x 𝒫 X | A x J 𝑡 x Conn y A ˙
114 112 113 sylibr G TopGrp A X x 𝒫 X | A x J 𝑡 x Conn A ˙
115 57 114 eqssd G TopGrp A X A ˙ = x 𝒫 X | A x J 𝑡 x Conn