Metamath Proof Explorer


Theorem conncompid

Description: The connected component containing A contains A . (Contributed by Mario Carneiro, 19-Mar-2015)

Ref Expression
Hypothesis conncomp.2 S=x𝒫X|AxJ𝑡xConn
Assertion conncompid JTopOnXAXAS

Proof

Step Hyp Ref Expression
1 conncomp.2 S=x𝒫X|AxJ𝑡xConn
2 simpr JTopOnXAXAX
3 2 snssd JTopOnXAXAX
4 snex AV
5 4 elpw A𝒫XAX
6 3 5 sylibr JTopOnXAXA𝒫X
7 snidg AXAA
8 7 adantl JTopOnXAXAA
9 restsn2 JTopOnXAXJ𝑡A=𝒫A
10 pwsn 𝒫A=A
11 indisconn AConn
12 10 11 eqeltri 𝒫AConn
13 9 12 eqeltrdi JTopOnXAXJ𝑡AConn
14 8 13 jca JTopOnXAXAAJ𝑡AConn
15 eleq2 x=AAxAA
16 oveq2 x=AJ𝑡x=J𝑡A
17 16 eleq1d x=AJ𝑡xConnJ𝑡AConn
18 15 17 anbi12d x=AAxJ𝑡xConnAAJ𝑡AConn
19 15 18 anbi12d x=AAxAxJ𝑡xConnAAAAJ𝑡AConn
20 19 rspcev A𝒫XAAAAJ𝑡AConnx𝒫XAxAxJ𝑡xConn
21 6 8 14 20 syl12anc JTopOnXAXx𝒫XAxAxJ𝑡xConn
22 elunirab Ax𝒫X|AxJ𝑡xConnx𝒫XAxAxJ𝑡xConn
23 21 22 sylibr JTopOnXAXAx𝒫X|AxJ𝑡xConn
24 23 1 eleqtrrdi JTopOnXAXAS