Metamath Proof Explorer


Theorem elunirab

Description: Membership in union of a class abstraction. (Contributed by NM, 4-Oct-2006)

Ref Expression
Assertion elunirab AxB|φxBAxφ

Proof

Step Hyp Ref Expression
1 eluniab Ax|xBφxAxxBφ
2 df-rab xB|φ=x|xBφ
3 2 unieqi xB|φ=x|xBφ
4 3 eleq2i AxB|φAx|xBφ
5 df-rex xBAxφxxBAxφ
6 an12 xBAxφAxxBφ
7 6 exbii xxBAxφxAxxBφ
8 5 7 bitri xBAxφxAxxBφ
9 1 4 8 3bitr4i AxB|φxBAxφ