Metamath Proof Explorer


Theorem pwsn

Description: The power set of a singleton. (Contributed by NM, 5-Jun-2006)

Ref Expression
Assertion pwsn 𝒫A=A

Proof

Step Hyp Ref Expression
1 sssn xAx=x=A
2 1 abbii x|xA=x|x=x=A
3 df-pw 𝒫A=x|xA
4 dfpr2 A=x|x=x=A
5 2 3 4 3eqtr4i 𝒫A=A