Metamath Proof Explorer


Theorem sssn

Description: The subsets of a singleton. (Contributed by NM, 24-Apr-2004)

Ref Expression
Assertion sssn ABA=A=B

Proof

Step Hyp Ref Expression
1 neq0 ¬A=xxA
2 ssel ABxAxB
3 elsni xBx=B
4 2 3 syl6 ABxAx=B
5 eleq1 x=BxABA
6 4 5 syl6 ABxAxABA
7 6 ibd ABxABA
8 7 exlimdv ABxxABA
9 1 8 biimtrid AB¬A=BA
10 snssi BABA
11 9 10 syl6 AB¬A=BA
12 11 anc2li AB¬A=ABBA
13 eqss A=BABBA
14 12 13 imbitrrdi AB¬A=A=B
15 14 orrd ABA=A=B
16 0ss B
17 sseq1 A=ABB
18 16 17 mpbiri A=AB
19 eqimss A=BAB
20 18 19 jaoi A=A=BAB
21 15 20 impbii ABA=A=B