| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tgpconncomp.x |
|
| 2 |
|
tgpconncomp.z |
|
| 3 |
|
tgpconncomp.j |
|
| 4 |
|
tgpconncomp.s |
|
| 5 |
|
ssrab2 |
|
| 6 |
|
sspwuni |
|
| 7 |
5 6
|
mpbi |
|
| 8 |
4 7
|
eqsstri |
|
| 9 |
8
|
a1i |
|
| 10 |
3 1
|
tgptopon |
|
| 11 |
|
tgpgrp |
|
| 12 |
1 2
|
grpidcl |
|
| 13 |
11 12
|
syl |
|
| 14 |
4
|
conncompid |
|
| 15 |
10 13 14
|
syl2anc |
|
| 16 |
15
|
ne0d |
|
| 17 |
|
df-ima |
|
| 18 |
|
resmpt |
|
| 19 |
8 18
|
ax-mp |
|
| 20 |
19
|
rneqi |
|
| 21 |
17 20
|
eqtri |
|
| 22 |
|
imassrn |
|
| 23 |
11
|
adantr |
|
| 24 |
23
|
adantr |
|
| 25 |
9
|
sselda |
|
| 26 |
25
|
adantr |
|
| 27 |
|
simpr |
|
| 28 |
|
eqid |
|
| 29 |
1 28
|
grpsubcl |
|
| 30 |
24 26 27 29
|
syl3anc |
|
| 31 |
30
|
fmpttd |
|
| 32 |
31
|
frnd |
|
| 33 |
22 32
|
sstrid |
|
| 34 |
1 2 28
|
grpsubid |
|
| 35 |
23 25 34
|
syl2anc |
|
| 36 |
|
simpr |
|
| 37 |
|
ovex |
|
| 38 |
|
eqid |
|
| 39 |
|
oveq2 |
|
| 40 |
38 39
|
elrnmpt1s |
|
| 41 |
36 37 40
|
sylancl |
|
| 42 |
35 41
|
eqeltrrd |
|
| 43 |
42 21
|
eleqtrrdi |
|
| 44 |
|
eqid |
|
| 45 |
|
eqid |
|
| 46 |
|
eqid |
|
| 47 |
1 45 46 28
|
grpsubval |
|
| 48 |
25 47
|
sylan |
|
| 49 |
48
|
mpteq2dva |
|
| 50 |
1 46
|
grpinvcl |
|
| 51 |
23 50
|
sylan |
|
| 52 |
1 46
|
grpinvf |
|
| 53 |
11 52
|
syl |
|
| 54 |
53
|
adantr |
|
| 55 |
54
|
feqmptd |
|
| 56 |
|
eqidd |
|
| 57 |
|
oveq2 |
|
| 58 |
51 55 56 57
|
fmptco |
|
| 59 |
49 58
|
eqtr4d |
|
| 60 |
3 46
|
grpinvhmeo |
|
| 61 |
60
|
adantr |
|
| 62 |
|
eqid |
|
| 63 |
62 1 45 3
|
tgplacthmeo |
|
| 64 |
25 63
|
syldan |
|
| 65 |
|
hmeoco |
|
| 66 |
61 64 65
|
syl2anc |
|
| 67 |
59 66
|
eqeltrd |
|
| 68 |
|
hmeocn |
|
| 69 |
67 68
|
syl |
|
| 70 |
|
toponuni |
|
| 71 |
10 70
|
syl |
|
| 72 |
71
|
adantr |
|
| 73 |
8 72
|
sseqtrid |
|
| 74 |
4
|
conncompconn |
|
| 75 |
10 13 74
|
syl2anc |
|
| 76 |
75
|
adantr |
|
| 77 |
44 69 73 76
|
connima |
|
| 78 |
4
|
conncompss |
|
| 79 |
33 43 77 78
|
syl3anc |
|
| 80 |
21 79
|
eqsstrrid |
|
| 81 |
|
ovex |
|
| 82 |
81 38
|
fnmpti |
|
| 83 |
|
df-f |
|
| 84 |
82 83
|
mpbiran |
|
| 85 |
80 84
|
sylibr |
|
| 86 |
38
|
fmpt |
|
| 87 |
85 86
|
sylibr |
|
| 88 |
87
|
ralrimiva |
|
| 89 |
1 28
|
issubg4 |
|
| 90 |
11 89
|
syl |
|
| 91 |
9 16 88 90
|
mpbir3and |
|
| 92 |
11
|
adantr |
|
| 93 |
|
eqid |
|
| 94 |
93 46
|
oppginv |
|
| 95 |
92 94
|
syl |
|
| 96 |
95
|
fveq1d |
|
| 97 |
|
simprll |
|
| 98 |
1 46
|
grpinvinv |
|
| 99 |
92 97 98
|
syl2anc |
|
| 100 |
96 99
|
eqtr3d |
|
| 101 |
100
|
oveq1d |
|
| 102 |
|
eqid |
|
| 103 |
45 93 102
|
oppgplus |
|
| 104 |
101 103
|
eqtrdi |
|
| 105 |
1 46
|
grpinvcl |
|
| 106 |
92 97 105
|
syl2anc |
|
| 107 |
|
simprlr |
|
| 108 |
99
|
oveq1d |
|
| 109 |
|
simprr |
|
| 110 |
108 109
|
eqeltrd |
|
| 111 |
|
eqid |
|
| 112 |
1 46 45 111
|
eqgval |
|
| 113 |
92 8 112
|
sylancl |
|
| 114 |
106 107 110 113
|
mpbir3and |
|
| 115 |
1 2 3 4 111
|
tgpconncompeqg |
|
| 116 |
106 115
|
syldan |
|
| 117 |
93
|
oppgtgp |
|
| 118 |
117
|
adantr |
|
| 119 |
93 1
|
oppgbas |
|
| 120 |
93 2
|
oppgid |
|
| 121 |
93 3
|
oppgtopn |
|
| 122 |
|
eqid |
|
| 123 |
119 120 121 4 122
|
tgpconncompeqg |
|
| 124 |
118 106 123
|
syl2anc |
|
| 125 |
116 124
|
eqtr4d |
|
| 126 |
125
|
eleq2d |
|
| 127 |
|
vex |
|
| 128 |
|
fvex |
|
| 129 |
127 128
|
elec |
|
| 130 |
127 128
|
elec |
|
| 131 |
126 129 130
|
3bitr3g |
|
| 132 |
114 131
|
mpbid |
|
| 133 |
|
eqid |
|
| 134 |
119 133 102 122
|
eqgval |
|
| 135 |
118 8 134
|
sylancl |
|
| 136 |
132 135
|
mpbid |
|
| 137 |
136
|
simp3d |
|
| 138 |
104 137
|
eqeltrrd |
|
| 139 |
138
|
expr |
|
| 140 |
139
|
ralrimivva |
|
| 141 |
1 45
|
isnsg2 |
|
| 142 |
91 140 141
|
sylanbrc |
|