Metamath Proof Explorer


Theorem hmeoco

Description: The composite of two homeomorphisms is a homeomorphism. (Contributed by FL, 9-Mar-2007) (Proof shortened by Mario Carneiro, 23-Aug-2015)

Ref Expression
Assertion hmeoco FJHomeoKGKHomeoLGFJHomeoL

Proof

Step Hyp Ref Expression
1 hmeocn FJHomeoKFJCnK
2 hmeocn GKHomeoLGKCnL
3 cnco FJCnKGKCnLGFJCnL
4 1 2 3 syl2an FJHomeoKGKHomeoLGFJCnL
5 cnvco GF-1=F-1G-1
6 hmeocnvcn GKHomeoLG-1LCnK
7 hmeocnvcn FJHomeoKF-1KCnJ
8 cnco G-1LCnKF-1KCnJF-1G-1LCnJ
9 6 7 8 syl2anr FJHomeoKGKHomeoLF-1G-1LCnJ
10 5 9 eqeltrid FJHomeoKGKHomeoLGF-1LCnJ
11 ishmeo GFJHomeoLGFJCnLGF-1LCnJ
12 4 10 11 sylanbrc FJHomeoKGKHomeoLGFJHomeoL