Metamath Proof Explorer


Theorem cnco

Description: The composition of two continuous functions is a continuous function. (Contributed by FL, 8-Dec-2006) (Revised by Mario Carneiro, 21-Aug-2015)

Ref Expression
Assertion cnco FJCnKGKCnLGFJCnL

Proof

Step Hyp Ref Expression
1 cntop1 FJCnKJTop
2 cntop2 GKCnLLTop
3 1 2 anim12i FJCnKGKCnLJTopLTop
4 eqid K=K
5 eqid L=L
6 4 5 cnf GKCnLG:KL
7 eqid J=J
8 7 4 cnf FJCnKF:JK
9 fco G:KLF:JKGF:JL
10 6 8 9 syl2anr FJCnKGKCnLGF:JL
11 cnvco GF-1=F-1G-1
12 11 imaeq1i GF-1x=F-1G-1x
13 imaco F-1G-1x=F-1G-1x
14 12 13 eqtri GF-1x=F-1G-1x
15 simpll FJCnKGKCnLxLFJCnK
16 cnima GKCnLxLG-1xK
17 16 adantll FJCnKGKCnLxLG-1xK
18 cnima FJCnKG-1xKF-1G-1xJ
19 15 17 18 syl2anc FJCnKGKCnLxLF-1G-1xJ
20 14 19 eqeltrid FJCnKGKCnLxLGF-1xJ
21 20 ralrimiva FJCnKGKCnLxLGF-1xJ
22 10 21 jca FJCnKGKCnLGF:JLxLGF-1xJ
23 7 5 iscn2 GFJCnLJTopLTopGF:JLxLGF-1xJ
24 3 22 23 sylanbrc FJCnKGKCnLGFJCnL