Description: The composition of a function F continuous at P with a function continuous at ( FP ) is continuous at P . Proposition 2 of BourbakiTop1 p. I.9. (Contributed by FL, 16-Nov-2006) (Proof shortened by Mario Carneiro, 27-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | cnpco | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnptop1 | |
|
2 | 1 | adantr | |
3 | cnptop2 | |
|
4 | 3 | adantl | |
5 | eqid | |
|
6 | 5 | cnprcl | |
7 | 6 | adantr | |
8 | 2 4 7 | 3jca | |
9 | eqid | |
|
10 | eqid | |
|
11 | 9 10 | cnpf | |
12 | 11 | adantl | |
13 | 5 9 | cnpf | |
14 | 13 | adantr | |
15 | fco | |
|
16 | 12 14 15 | syl2anc | |
17 | simplr | |
|
18 | simprl | |
|
19 | fvco3 | |
|
20 | 14 7 19 | syl2anc | |
21 | 20 | adantr | |
22 | simprr | |
|
23 | 21 22 | eqeltrrd | |
24 | cnpimaex | |
|
25 | 17 18 23 24 | syl3anc | |
26 | simplll | |
|
27 | simprl | |
|
28 | simprrl | |
|
29 | cnpimaex | |
|
30 | 26 27 28 29 | syl3anc | |
31 | imaco | |
|
32 | imass2 | |
|
33 | 31 32 | eqsstrid | |
34 | simprrr | |
|
35 | sstr2 | |
|
36 | 33 34 35 | syl2imc | |
37 | 36 | anim2d | |
38 | 37 | reximdv | |
39 | 30 38 | mpd | |
40 | 25 39 | rexlimddv | |
41 | 40 | expr | |
42 | 41 | ralrimiva | |
43 | 16 42 | jca | |
44 | 5 10 | iscnp2 | |
45 | 8 43 44 | sylanbrc | |