Metamath Proof Explorer


Theorem cnpco

Description: The composition of a function F continuous at P with a function continuous at ( FP ) is continuous at P . Proposition 2 of BourbakiTop1 p. I.9. (Contributed by FL, 16-Nov-2006) (Proof shortened by Mario Carneiro, 27-Dec-2014)

Ref Expression
Assertion cnpco FJCnPKPGKCnPLFPGFJCnPLP

Proof

Step Hyp Ref Expression
1 cnptop1 FJCnPKPJTop
2 1 adantr FJCnPKPGKCnPLFPJTop
3 cnptop2 GKCnPLFPLTop
4 3 adantl FJCnPKPGKCnPLFPLTop
5 eqid J=J
6 5 cnprcl FJCnPKPPJ
7 6 adantr FJCnPKPGKCnPLFPPJ
8 2 4 7 3jca FJCnPKPGKCnPLFPJTopLTopPJ
9 eqid K=K
10 eqid L=L
11 9 10 cnpf GKCnPLFPG:KL
12 11 adantl FJCnPKPGKCnPLFPG:KL
13 5 9 cnpf FJCnPKPF:JK
14 13 adantr FJCnPKPGKCnPLFPF:JK
15 fco G:KLF:JKGF:JL
16 12 14 15 syl2anc FJCnPKPGKCnPLFPGF:JL
17 simplr FJCnPKPGKCnPLFPzLGFPzGKCnPLFP
18 simprl FJCnPKPGKCnPLFPzLGFPzzL
19 fvco3 F:JKPJGFP=GFP
20 14 7 19 syl2anc FJCnPKPGKCnPLFPGFP=GFP
21 20 adantr FJCnPKPGKCnPLFPzLGFPzGFP=GFP
22 simprr FJCnPKPGKCnPLFPzLGFPzGFPz
23 21 22 eqeltrrd FJCnPKPGKCnPLFPzLGFPzGFPz
24 cnpimaex GKCnPLFPzLGFPzyKFPyGyz
25 17 18 23 24 syl3anc FJCnPKPGKCnPLFPzLGFPzyKFPyGyz
26 simplll FJCnPKPGKCnPLFPzLGFPzyKFPyGyzFJCnPKP
27 simprl FJCnPKPGKCnPLFPzLGFPzyKFPyGyzyK
28 simprrl FJCnPKPGKCnPLFPzLGFPzyKFPyGyzFPy
29 cnpimaex FJCnPKPyKFPyxJPxFxy
30 26 27 28 29 syl3anc FJCnPKPGKCnPLFPzLGFPzyKFPyGyzxJPxFxy
31 imaco GFx=GFx
32 imass2 FxyGFxGy
33 31 32 eqsstrid FxyGFxGy
34 simprrr FJCnPKPGKCnPLFPzLGFPzyKFPyGyzGyz
35 sstr2 GFxGyGyzGFxz
36 33 34 35 syl2imc FJCnPKPGKCnPLFPzLGFPzyKFPyGyzFxyGFxz
37 36 anim2d FJCnPKPGKCnPLFPzLGFPzyKFPyGyzPxFxyPxGFxz
38 37 reximdv FJCnPKPGKCnPLFPzLGFPzyKFPyGyzxJPxFxyxJPxGFxz
39 30 38 mpd FJCnPKPGKCnPLFPzLGFPzyKFPyGyzxJPxGFxz
40 25 39 rexlimddv FJCnPKPGKCnPLFPzLGFPzxJPxGFxz
41 40 expr FJCnPKPGKCnPLFPzLGFPzxJPxGFxz
42 41 ralrimiva FJCnPKPGKCnPLFPzLGFPzxJPxGFxz
43 16 42 jca FJCnPKPGKCnPLFPGF:JLzLGFPzxJPxGFxz
44 5 10 iscnp2 GFJCnPLPJTopLTopPJGF:JLzLGFPzxJPxGFxz
45 8 43 44 sylanbrc FJCnPKPGKCnPLFPGFJCnPLP