| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnptop1 |
|
| 2 |
1
|
adantr |
|
| 3 |
|
cnptop2 |
|
| 4 |
3
|
adantl |
|
| 5 |
|
eqid |
|
| 6 |
5
|
cnprcl |
|
| 7 |
6
|
adantr |
|
| 8 |
2 4 7
|
3jca |
|
| 9 |
|
eqid |
|
| 10 |
|
eqid |
|
| 11 |
9 10
|
cnpf |
|
| 12 |
11
|
adantl |
|
| 13 |
5 9
|
cnpf |
|
| 14 |
13
|
adantr |
|
| 15 |
|
fco |
|
| 16 |
12 14 15
|
syl2anc |
|
| 17 |
|
simplr |
|
| 18 |
|
simprl |
|
| 19 |
|
fvco3 |
|
| 20 |
14 7 19
|
syl2anc |
|
| 21 |
20
|
adantr |
|
| 22 |
|
simprr |
|
| 23 |
21 22
|
eqeltrrd |
|
| 24 |
|
cnpimaex |
|
| 25 |
17 18 23 24
|
syl3anc |
|
| 26 |
|
simplll |
|
| 27 |
|
simprl |
|
| 28 |
|
simprrl |
|
| 29 |
|
cnpimaex |
|
| 30 |
26 27 28 29
|
syl3anc |
|
| 31 |
|
imaco |
|
| 32 |
|
imass2 |
|
| 33 |
31 32
|
eqsstrid |
|
| 34 |
|
simprrr |
|
| 35 |
|
sstr2 |
|
| 36 |
33 34 35
|
syl2imc |
|
| 37 |
36
|
anim2d |
|
| 38 |
37
|
reximdv |
|
| 39 |
30 38
|
mpd |
|
| 40 |
25 39
|
rexlimddv |
|
| 41 |
40
|
expr |
|
| 42 |
41
|
ralrimiva |
|
| 43 |
16 42
|
jca |
|
| 44 |
5 10
|
iscnp2 |
|
| 45 |
8 43 44
|
sylanbrc |
|