Description: The predicate "the class F is a continuous function from topology J to topology K at point P ". Based on Theorem 7.2(g) of Munkres p. 107. (Contributed by Mario Carneiro, 21-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | iscn.1 | |
|
iscn.2 | |
||
Assertion | iscnp2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscn.1 | |
|
2 | iscn.2 | |
|
3 | n0i | |
|
4 | df-ov | |
|
5 | ndmfv | |
|
6 | 4 5 | eqtrid | |
7 | 6 | fveq1d | |
8 | 0fv | |
|
9 | 7 8 | eqtrdi | |
10 | 3 9 | nsyl2 | |
11 | df-cnp | |
|
12 | ovex | |
|
13 | ssrab2 | |
|
14 | 12 13 | elpwi2 | |
15 | 14 | rgenw | |
16 | eqid | |
|
17 | 16 | fmpt | |
18 | 15 17 | mpbi | |
19 | vuniex | |
|
20 | 12 | pwex | |
21 | fex2 | |
|
22 | 18 19 20 21 | mp3an | |
23 | 11 22 | dmmpo | |
24 | 10 23 | eleqtrdi | |
25 | opelxp | |
|
26 | 24 25 | sylib | |
27 | 26 | simpld | |
28 | 26 | simprd | |
29 | elfvdm | |
|
30 | 1 | toptopon | |
31 | 2 | toptopon | |
32 | cnpfval | |
|
33 | 30 31 32 | syl2anb | |
34 | 26 33 | syl | |
35 | 34 | dmeqd | |
36 | ovex | |
|
37 | 36 | rabex | |
38 | 37 | rgenw | |
39 | dmmptg | |
|
40 | 38 39 | ax-mp | |
41 | 35 40 | eqtrdi | |
42 | 29 41 | eleqtrd | |
43 | 27 28 42 | 3jca | |
44 | biid | |
|
45 | iscnp | |
|
46 | 30 31 44 45 | syl3anb | |
47 | 43 46 | biadanii | |