Metamath Proof Explorer


Theorem iscnp2

Description: The predicate "the class F is a continuous function from topology J to topology K at point P ". Based on Theorem 7.2(g) of Munkres p. 107. (Contributed by Mario Carneiro, 21-Aug-2015)

Ref Expression
Hypotheses iscn.1 X=J
iscn.2 Y=K
Assertion iscnp2 FJCnPKPJTopKTopPXF:XYyKFPyxJPxFxy

Proof

Step Hyp Ref Expression
1 iscn.1 X=J
2 iscn.2 Y=K
3 n0i FJCnPKP¬JCnPKP=
4 df-ov JCnPK=CnPJK
5 ndmfv ¬JKdomCnPCnPJK=
6 4 5 eqtrid ¬JKdomCnPJCnPK=
7 6 fveq1d ¬JKdomCnPJCnPKP=P
8 0fv P=
9 7 8 eqtrdi ¬JKdomCnPJCnPKP=
10 3 9 nsyl2 FJCnPKPJKdomCnP
11 df-cnp CnP=jTop,kTopxjfkj|ykfxygjxgfgy
12 ovex kjV
13 ssrab2 fkj|ykfxygjxgfgykj
14 12 13 elpwi2 fkj|ykfxygjxgfgy𝒫kj
15 14 rgenw xjfkj|ykfxygjxgfgy𝒫kj
16 eqid xjfkj|ykfxygjxgfgy=xjfkj|ykfxygjxgfgy
17 16 fmpt xjfkj|ykfxygjxgfgy𝒫kjxjfkj|ykfxygjxgfgy:j𝒫kj
18 15 17 mpbi xjfkj|ykfxygjxgfgy:j𝒫kj
19 vuniex jV
20 12 pwex 𝒫kjV
21 fex2 xjfkj|ykfxygjxgfgy:j𝒫kjjV𝒫kjVxjfkj|ykfxygjxgfgyV
22 18 19 20 21 mp3an xjfkj|ykfxygjxgfgyV
23 11 22 dmmpo domCnP=Top×Top
24 10 23 eleqtrdi FJCnPKPJKTop×Top
25 opelxp JKTop×TopJTopKTop
26 24 25 sylib FJCnPKPJTopKTop
27 26 simpld FJCnPKPJTop
28 26 simprd FJCnPKPKTop
29 elfvdm FJCnPKPPdomJCnPK
30 1 toptopon JTopJTopOnX
31 2 toptopon KTopKTopOnY
32 cnpfval JTopOnXKTopOnYJCnPK=xXfYX|wKfxwvJxvfvw
33 30 31 32 syl2anb JTopKTopJCnPK=xXfYX|wKfxwvJxvfvw
34 26 33 syl FJCnPKPJCnPK=xXfYX|wKfxwvJxvfvw
35 34 dmeqd FJCnPKPdomJCnPK=domxXfYX|wKfxwvJxvfvw
36 ovex YXV
37 36 rabex fYX|wKfxwvJxvfvwV
38 37 rgenw xXfYX|wKfxwvJxvfvwV
39 dmmptg xXfYX|wKfxwvJxvfvwVdomxXfYX|wKfxwvJxvfvw=X
40 38 39 ax-mp domxXfYX|wKfxwvJxvfvw=X
41 35 40 eqtrdi FJCnPKPdomJCnPK=X
42 29 41 eleqtrd FJCnPKPPX
43 27 28 42 3jca FJCnPKPJTopKTopPX
44 biid PXPX
45 iscnp JTopOnXKTopOnYPXFJCnPKPF:XYyKFPyxJPxFxy
46 30 31 44 45 syl3anb JTopKTopPXFJCnPKPF:XYyKFPyxJPxFxy
47 43 46 biadanii FJCnPKPJTopKTopPXF:XYyKFPyxJPxFxy