Metamath Proof Explorer


Theorem cnpfval

Description: The function mapping the points in a topology J to the set of all functions from J to topology K continuous at that point. (Contributed by NM, 17-Oct-2006) (Revised by Mario Carneiro, 21-Aug-2015)

Ref Expression
Assertion cnpfval JTopOnXKTopOnYJCnPK=xXfYX|wKfxwvJxvfvw

Proof

Step Hyp Ref Expression
1 df-cnp CnP=jTop,kTopxjfkj|wkfxwvjxvfvw
2 1 a1i JTopOnXKTopOnYCnP=jTop,kTopxjfkj|wkfxwvjxvfvw
3 simprl JTopOnXKTopOnYj=Jk=Kj=J
4 3 unieqd JTopOnXKTopOnYj=Jk=Kj=J
5 toponuni JTopOnXX=J
6 5 ad2antrr JTopOnXKTopOnYj=Jk=KX=J
7 4 6 eqtr4d JTopOnXKTopOnYj=Jk=Kj=X
8 simprr JTopOnXKTopOnYj=Jk=Kk=K
9 8 unieqd JTopOnXKTopOnYj=Jk=Kk=K
10 toponuni KTopOnYY=K
11 10 ad2antlr JTopOnXKTopOnYj=Jk=KY=K
12 9 11 eqtr4d JTopOnXKTopOnYj=Jk=Kk=Y
13 12 7 oveq12d JTopOnXKTopOnYj=Jk=Kkj=YX
14 3 rexeqdv JTopOnXKTopOnYj=Jk=KvjxvfvwvJxvfvw
15 14 imbi2d JTopOnXKTopOnYj=Jk=KfxwvjxvfvwfxwvJxvfvw
16 8 15 raleqbidv JTopOnXKTopOnYj=Jk=KwkfxwvjxvfvwwKfxwvJxvfvw
17 13 16 rabeqbidv JTopOnXKTopOnYj=Jk=Kfkj|wkfxwvjxvfvw=fYX|wKfxwvJxvfvw
18 7 17 mpteq12dv JTopOnXKTopOnYj=Jk=Kxjfkj|wkfxwvjxvfvw=xXfYX|wKfxwvJxvfvw
19 topontop JTopOnXJTop
20 19 adantr JTopOnXKTopOnYJTop
21 topontop KTopOnYKTop
22 21 adantl JTopOnXKTopOnYKTop
23 ovex YXV
24 ssrab2 fYX|wKfxwvJxvfvwYX
25 23 24 elpwi2 fYX|wKfxwvJxvfvw𝒫YX
26 25 a1i JTopOnXKTopOnYxXfYX|wKfxwvJxvfvw𝒫YX
27 26 fmpttd JTopOnXKTopOnYxXfYX|wKfxwvJxvfvw:X𝒫YX
28 toponmax JTopOnXXJ
29 28 adantr JTopOnXKTopOnYXJ
30 23 pwex 𝒫YXV
31 30 a1i JTopOnXKTopOnY𝒫YXV
32 fex2 xXfYX|wKfxwvJxvfvw:X𝒫YXXJ𝒫YXVxXfYX|wKfxwvJxvfvwV
33 27 29 31 32 syl3anc JTopOnXKTopOnYxXfYX|wKfxwvJxvfvwV
34 2 18 20 22 33 ovmpod JTopOnXKTopOnYJCnPK=xXfYX|wKfxwvJxvfvw