Metamath Proof Explorer


Theorem cnprcl

Description: Reverse closure for a function continuous at a point. (Contributed by Mario Carneiro, 21-Aug-2015)

Ref Expression
Hypothesis iscnp2.1 X=J
Assertion cnprcl FJCnPKPPX

Proof

Step Hyp Ref Expression
1 iscnp2.1 X=J
2 eqid K=K
3 1 2 iscnp2 FJCnPKPJTopKTopPXF:XKyKFPyxJPxFxy
4 3 simplbi FJCnPKPJTopKTopPX
5 4 simp3d FJCnPKPPX