Metamath Proof Explorer


Theorem conncompss

Description: The connected component containing A is a superset of any other connected set containing A . (Contributed by Mario Carneiro, 19-Mar-2015)

Ref Expression
Hypothesis conncomp.2 S = x 𝒫 X | A x J 𝑡 x Conn
Assertion conncompss T X A T J 𝑡 T Conn T S

Proof

Step Hyp Ref Expression
1 conncomp.2 S = x 𝒫 X | A x J 𝑡 x Conn
2 simp1 T X A T J 𝑡 T Conn T X
3 conntop J 𝑡 T Conn J 𝑡 T Top
4 3 3ad2ant3 T X A T J 𝑡 T Conn J 𝑡 T Top
5 restrcl J 𝑡 T Top J V T V
6 5 simprd J 𝑡 T Top T V
7 elpwg T V T 𝒫 X T X
8 4 6 7 3syl T X A T J 𝑡 T Conn T 𝒫 X T X
9 2 8 mpbird T X A T J 𝑡 T Conn T 𝒫 X
10 3simpc T X A T J 𝑡 T Conn A T J 𝑡 T Conn
11 eleq2 y = T A y A T
12 oveq2 y = T J 𝑡 y = J 𝑡 T
13 12 eleq1d y = T J 𝑡 y Conn J 𝑡 T Conn
14 11 13 anbi12d y = T A y J 𝑡 y Conn A T J 𝑡 T Conn
15 eleq2 x = y A x A y
16 oveq2 x = y J 𝑡 x = J 𝑡 y
17 16 eleq1d x = y J 𝑡 x Conn J 𝑡 y Conn
18 15 17 anbi12d x = y A x J 𝑡 x Conn A y J 𝑡 y Conn
19 18 cbvrabv x 𝒫 X | A x J 𝑡 x Conn = y 𝒫 X | A y J 𝑡 y Conn
20 14 19 elrab2 T x 𝒫 X | A x J 𝑡 x Conn T 𝒫 X A T J 𝑡 T Conn
21 9 10 20 sylanbrc T X A T J 𝑡 T Conn T x 𝒫 X | A x J 𝑡 x Conn
22 elssuni T x 𝒫 X | A x J 𝑡 x Conn T x 𝒫 X | A x J 𝑡 x Conn
23 21 22 syl T X A T J 𝑡 T Conn T x 𝒫 X | A x J 𝑡 x Conn
24 23 1 sseqtrrdi T X A T J 𝑡 T Conn T S