Metamath Proof Explorer


Theorem restrcl

Description: Reverse closure for the subspace topology. (Contributed by Mario Carneiro, 19-Mar-2015) (Revised by Mario Carneiro, 1-May-2015)

Ref Expression
Assertion restrcl J𝑡ATopJVAV

Proof

Step Hyp Ref Expression
1 0opn J𝑡ATopJ𝑡A
2 n0i J𝑡A¬J𝑡A=
3 1 2 syl J𝑡ATop¬J𝑡A=
4 restfn 𝑡FnV×V
5 4 fndmi dom𝑡=V×V
6 5 ndmov ¬JVAVJ𝑡A=
7 3 6 nsyl2 J𝑡ATopJVAV