Metamath Proof Explorer


Theorem restbas

Description: A subspace topology basis is a basis. (Contributed by Mario Carneiro, 19-Mar-2015)

Ref Expression
Assertion restbas BTopBasesB𝑡ATopBases

Proof

Step Hyp Ref Expression
1 elrest BTopBasesAVaB𝑡AuBa=uA
2 elrest BTopBasesAVbB𝑡AvBb=vA
3 1 2 anbi12d BTopBasesAVaB𝑡AbB𝑡AuBa=uAvBb=vA
4 reeanv uBvBa=uAb=vAuBa=uAvBb=vA
5 3 4 bitr4di BTopBasesAVaB𝑡AbB𝑡AuBvBa=uAb=vA
6 simplll BTopBasesAVuBvBcuvABTopBases
7 simplrl BTopBasesAVuBvBcuvAuB
8 simplrr BTopBasesAVuBvBcuvAvB
9 simpr BTopBasesAVuBvBcuvAcuvA
10 9 elin1d BTopBasesAVuBvBcuvAcuv
11 basis2 BTopBasesuBvBcuvzBczzuv
12 6 7 8 10 11 syl22anc BTopBasesAVuBvBcuvAzBczzuv
13 simplll BTopBasesAVuBvBcuvAzBczzuvBTopBasesAV
14 13 simpld BTopBasesAVuBvBcuvAzBczzuvBTopBases
15 13 simprd BTopBasesAVuBvBcuvAzBczzuvAV
16 simprl BTopBasesAVuBvBcuvAzBczzuvzB
17 elrestr BTopBasesAVzBzAB𝑡A
18 14 15 16 17 syl3anc BTopBasesAVuBvBcuvAzBczzuvzAB𝑡A
19 simprrl BTopBasesAVuBvBcuvAzBczzuvcz
20 simplr BTopBasesAVuBvBcuvAzBczzuvcuvA
21 20 elin2d BTopBasesAVuBvBcuvAzBczzuvcA
22 19 21 elind BTopBasesAVuBvBcuvAzBczzuvczA
23 simprrr BTopBasesAVuBvBcuvAzBczzuvzuv
24 23 ssrind BTopBasesAVuBvBcuvAzBczzuvzAuvA
25 eleq2 w=zAcwczA
26 sseq1 w=zAwuvAzAuvA
27 25 26 anbi12d w=zAcwwuvAczAzAuvA
28 27 rspcev zAB𝑡AczAzAuvAwB𝑡AcwwuvA
29 18 22 24 28 syl12anc BTopBasesAVuBvBcuvAzBczzuvwB𝑡AcwwuvA
30 12 29 rexlimddv BTopBasesAVuBvBcuvAwB𝑡AcwwuvA
31 30 ralrimiva BTopBasesAVuBvBcuvAwB𝑡AcwwuvA
32 ineq12 a=uAb=vAab=uAvA
33 inindir uvA=uAvA
34 32 33 eqtr4di a=uAb=vAab=uvA
35 34 sseq2d a=uAb=vAwabwuvA
36 35 anbi2d a=uAb=vAcwwabcwwuvA
37 36 rexbidv a=uAb=vAwB𝑡AcwwabwB𝑡AcwwuvA
38 34 37 raleqbidv a=uAb=vAcabwB𝑡AcwwabcuvAwB𝑡AcwwuvA
39 31 38 syl5ibrcom BTopBasesAVuBvBa=uAb=vAcabwB𝑡Acwwab
40 39 rexlimdvva BTopBasesAVuBvBa=uAb=vAcabwB𝑡Acwwab
41 5 40 sylbid BTopBasesAVaB𝑡AbB𝑡AcabwB𝑡Acwwab
42 41 ralrimivv BTopBasesAVaB𝑡AbB𝑡AcabwB𝑡Acwwab
43 ovex B𝑡AV
44 isbasis2g B𝑡AVB𝑡ATopBasesaB𝑡AbB𝑡AcabwB𝑡Acwwab
45 43 44 ax-mp B𝑡ATopBasesaB𝑡AbB𝑡AcabwB𝑡Acwwab
46 42 45 sylibr BTopBasesAVB𝑡ATopBases
47 relxp RelV×V
48 restfn 𝑡FnV×V
49 fndm 𝑡FnV×Vdom𝑡=V×V
50 48 49 ax-mp dom𝑡=V×V
51 50 releqi Reldom𝑡RelV×V
52 47 51 mpbir Reldom𝑡
53 52 ovprc2 ¬AVB𝑡A=
54 53 adantl BTopBases¬AVB𝑡A=
55 fi0 fi=
56 fibas fiTopBases
57 55 56 eqeltrri TopBases
58 54 57 eqeltrdi BTopBases¬AVB𝑡ATopBases
59 46 58 pm2.61dan BTopBasesB𝑡ATopBases