Description: A subspace topology basis is a basis. (Contributed by Mario Carneiro, 19-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | restbas | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrest | |
|
2 | elrest | |
|
3 | 1 2 | anbi12d | |
4 | reeanv | |
|
5 | 3 4 | bitr4di | |
6 | simplll | |
|
7 | simplrl | |
|
8 | simplrr | |
|
9 | simpr | |
|
10 | 9 | elin1d | |
11 | basis2 | |
|
12 | 6 7 8 10 11 | syl22anc | |
13 | simplll | |
|
14 | 13 | simpld | |
15 | 13 | simprd | |
16 | simprl | |
|
17 | elrestr | |
|
18 | 14 15 16 17 | syl3anc | |
19 | simprrl | |
|
20 | simplr | |
|
21 | 20 | elin2d | |
22 | 19 21 | elind | |
23 | simprrr | |
|
24 | 23 | ssrind | |
25 | eleq2 | |
|
26 | sseq1 | |
|
27 | 25 26 | anbi12d | |
28 | 27 | rspcev | |
29 | 18 22 24 28 | syl12anc | |
30 | 12 29 | rexlimddv | |
31 | 30 | ralrimiva | |
32 | ineq12 | |
|
33 | inindir | |
|
34 | 32 33 | eqtr4di | |
35 | 34 | sseq2d | |
36 | 35 | anbi2d | |
37 | 36 | rexbidv | |
38 | 34 37 | raleqbidv | |
39 | 31 38 | syl5ibrcom | |
40 | 39 | rexlimdvva | |
41 | 5 40 | sylbid | |
42 | 41 | ralrimivv | |
43 | ovex | |
|
44 | isbasis2g | |
|
45 | 43 44 | ax-mp | |
46 | 42 45 | sylibr | |
47 | relxp | |
|
48 | restfn | |
|
49 | fndm | |
|
50 | 48 49 | ax-mp | |
51 | 50 | releqi | |
52 | 47 51 | mpbir | |
53 | 52 | ovprc2 | |
54 | 53 | adantl | |
55 | fi0 | |
|
56 | fibas | |
|
57 | 55 56 | eqeltrri | |
58 | 54 57 | eqeltrdi | |
59 | 46 58 | pm2.61dan | |