Metamath Proof Explorer


Theorem tgpconncomp

Description: The identity component, the connected component containing the identity element, is a closed ( conncompcld ) normal subgroup. (Contributed by Mario Carneiro, 17-Sep-2015)

Ref Expression
Hypotheses tgpconncomp.x 𝑋 = ( Base ‘ 𝐺 )
tgpconncomp.z 0 = ( 0g𝐺 )
tgpconncomp.j 𝐽 = ( TopOpen ‘ 𝐺 )
tgpconncomp.s 𝑆 = { 𝑥 ∈ 𝒫 𝑋 ∣ ( 0𝑥 ∧ ( 𝐽t 𝑥 ) ∈ Conn ) }
Assertion tgpconncomp ( 𝐺 ∈ TopGrp → 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) )

Proof

Step Hyp Ref Expression
1 tgpconncomp.x 𝑋 = ( Base ‘ 𝐺 )
2 tgpconncomp.z 0 = ( 0g𝐺 )
3 tgpconncomp.j 𝐽 = ( TopOpen ‘ 𝐺 )
4 tgpconncomp.s 𝑆 = { 𝑥 ∈ 𝒫 𝑋 ∣ ( 0𝑥 ∧ ( 𝐽t 𝑥 ) ∈ Conn ) }
5 ssrab2 { 𝑥 ∈ 𝒫 𝑋 ∣ ( 0𝑥 ∧ ( 𝐽t 𝑥 ) ∈ Conn ) } ⊆ 𝒫 𝑋
6 sspwuni ( { 𝑥 ∈ 𝒫 𝑋 ∣ ( 0𝑥 ∧ ( 𝐽t 𝑥 ) ∈ Conn ) } ⊆ 𝒫 𝑋 { 𝑥 ∈ 𝒫 𝑋 ∣ ( 0𝑥 ∧ ( 𝐽t 𝑥 ) ∈ Conn ) } ⊆ 𝑋 )
7 5 6 mpbi { 𝑥 ∈ 𝒫 𝑋 ∣ ( 0𝑥 ∧ ( 𝐽t 𝑥 ) ∈ Conn ) } ⊆ 𝑋
8 4 7 eqsstri 𝑆𝑋
9 8 a1i ( 𝐺 ∈ TopGrp → 𝑆𝑋 )
10 3 1 tgptopon ( 𝐺 ∈ TopGrp → 𝐽 ∈ ( TopOn ‘ 𝑋 ) )
11 tgpgrp ( 𝐺 ∈ TopGrp → 𝐺 ∈ Grp )
12 1 2 grpidcl ( 𝐺 ∈ Grp → 0𝑋 )
13 11 12 syl ( 𝐺 ∈ TopGrp → 0𝑋 )
14 4 conncompid ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 0𝑋 ) → 0𝑆 )
15 10 13 14 syl2anc ( 𝐺 ∈ TopGrp → 0𝑆 )
16 15 ne0d ( 𝐺 ∈ TopGrp → 𝑆 ≠ ∅ )
17 df-ima ( ( 𝑧𝑋 ↦ ( 𝑦 ( -g𝐺 ) 𝑧 ) ) “ 𝑆 ) = ran ( ( 𝑧𝑋 ↦ ( 𝑦 ( -g𝐺 ) 𝑧 ) ) ↾ 𝑆 )
18 resmpt ( 𝑆𝑋 → ( ( 𝑧𝑋 ↦ ( 𝑦 ( -g𝐺 ) 𝑧 ) ) ↾ 𝑆 ) = ( 𝑧𝑆 ↦ ( 𝑦 ( -g𝐺 ) 𝑧 ) ) )
19 8 18 ax-mp ( ( 𝑧𝑋 ↦ ( 𝑦 ( -g𝐺 ) 𝑧 ) ) ↾ 𝑆 ) = ( 𝑧𝑆 ↦ ( 𝑦 ( -g𝐺 ) 𝑧 ) )
20 19 rneqi ran ( ( 𝑧𝑋 ↦ ( 𝑦 ( -g𝐺 ) 𝑧 ) ) ↾ 𝑆 ) = ran ( 𝑧𝑆 ↦ ( 𝑦 ( -g𝐺 ) 𝑧 ) )
21 17 20 eqtri ( ( 𝑧𝑋 ↦ ( 𝑦 ( -g𝐺 ) 𝑧 ) ) “ 𝑆 ) = ran ( 𝑧𝑆 ↦ ( 𝑦 ( -g𝐺 ) 𝑧 ) )
22 imassrn ( ( 𝑧𝑋 ↦ ( 𝑦 ( -g𝐺 ) 𝑧 ) ) “ 𝑆 ) ⊆ ran ( 𝑧𝑋 ↦ ( 𝑦 ( -g𝐺 ) 𝑧 ) )
23 11 adantr ( ( 𝐺 ∈ TopGrp ∧ 𝑦𝑆 ) → 𝐺 ∈ Grp )
24 23 adantr ( ( ( 𝐺 ∈ TopGrp ∧ 𝑦𝑆 ) ∧ 𝑧𝑋 ) → 𝐺 ∈ Grp )
25 9 sselda ( ( 𝐺 ∈ TopGrp ∧ 𝑦𝑆 ) → 𝑦𝑋 )
26 25 adantr ( ( ( 𝐺 ∈ TopGrp ∧ 𝑦𝑆 ) ∧ 𝑧𝑋 ) → 𝑦𝑋 )
27 simpr ( ( ( 𝐺 ∈ TopGrp ∧ 𝑦𝑆 ) ∧ 𝑧𝑋 ) → 𝑧𝑋 )
28 eqid ( -g𝐺 ) = ( -g𝐺 )
29 1 28 grpsubcl ( ( 𝐺 ∈ Grp ∧ 𝑦𝑋𝑧𝑋 ) → ( 𝑦 ( -g𝐺 ) 𝑧 ) ∈ 𝑋 )
30 24 26 27 29 syl3anc ( ( ( 𝐺 ∈ TopGrp ∧ 𝑦𝑆 ) ∧ 𝑧𝑋 ) → ( 𝑦 ( -g𝐺 ) 𝑧 ) ∈ 𝑋 )
31 30 fmpttd ( ( 𝐺 ∈ TopGrp ∧ 𝑦𝑆 ) → ( 𝑧𝑋 ↦ ( 𝑦 ( -g𝐺 ) 𝑧 ) ) : 𝑋𝑋 )
32 31 frnd ( ( 𝐺 ∈ TopGrp ∧ 𝑦𝑆 ) → ran ( 𝑧𝑋 ↦ ( 𝑦 ( -g𝐺 ) 𝑧 ) ) ⊆ 𝑋 )
33 22 32 sstrid ( ( 𝐺 ∈ TopGrp ∧ 𝑦𝑆 ) → ( ( 𝑧𝑋 ↦ ( 𝑦 ( -g𝐺 ) 𝑧 ) ) “ 𝑆 ) ⊆ 𝑋 )
34 1 2 28 grpsubid ( ( 𝐺 ∈ Grp ∧ 𝑦𝑋 ) → ( 𝑦 ( -g𝐺 ) 𝑦 ) = 0 )
35 23 25 34 syl2anc ( ( 𝐺 ∈ TopGrp ∧ 𝑦𝑆 ) → ( 𝑦 ( -g𝐺 ) 𝑦 ) = 0 )
36 simpr ( ( 𝐺 ∈ TopGrp ∧ 𝑦𝑆 ) → 𝑦𝑆 )
37 ovex ( 𝑦 ( -g𝐺 ) 𝑦 ) ∈ V
38 eqid ( 𝑧𝑆 ↦ ( 𝑦 ( -g𝐺 ) 𝑧 ) ) = ( 𝑧𝑆 ↦ ( 𝑦 ( -g𝐺 ) 𝑧 ) )
39 oveq2 ( 𝑧 = 𝑦 → ( 𝑦 ( -g𝐺 ) 𝑧 ) = ( 𝑦 ( -g𝐺 ) 𝑦 ) )
40 38 39 elrnmpt1s ( ( 𝑦𝑆 ∧ ( 𝑦 ( -g𝐺 ) 𝑦 ) ∈ V ) → ( 𝑦 ( -g𝐺 ) 𝑦 ) ∈ ran ( 𝑧𝑆 ↦ ( 𝑦 ( -g𝐺 ) 𝑧 ) ) )
41 36 37 40 sylancl ( ( 𝐺 ∈ TopGrp ∧ 𝑦𝑆 ) → ( 𝑦 ( -g𝐺 ) 𝑦 ) ∈ ran ( 𝑧𝑆 ↦ ( 𝑦 ( -g𝐺 ) 𝑧 ) ) )
42 35 41 eqeltrrd ( ( 𝐺 ∈ TopGrp ∧ 𝑦𝑆 ) → 0 ∈ ran ( 𝑧𝑆 ↦ ( 𝑦 ( -g𝐺 ) 𝑧 ) ) )
43 42 21 eleqtrrdi ( ( 𝐺 ∈ TopGrp ∧ 𝑦𝑆 ) → 0 ∈ ( ( 𝑧𝑋 ↦ ( 𝑦 ( -g𝐺 ) 𝑧 ) ) “ 𝑆 ) )
44 eqid 𝐽 = 𝐽
45 eqid ( +g𝐺 ) = ( +g𝐺 )
46 eqid ( invg𝐺 ) = ( invg𝐺 )
47 1 45 46 28 grpsubval ( ( 𝑦𝑋𝑧𝑋 ) → ( 𝑦 ( -g𝐺 ) 𝑧 ) = ( 𝑦 ( +g𝐺 ) ( ( invg𝐺 ) ‘ 𝑧 ) ) )
48 25 47 sylan ( ( ( 𝐺 ∈ TopGrp ∧ 𝑦𝑆 ) ∧ 𝑧𝑋 ) → ( 𝑦 ( -g𝐺 ) 𝑧 ) = ( 𝑦 ( +g𝐺 ) ( ( invg𝐺 ) ‘ 𝑧 ) ) )
49 48 mpteq2dva ( ( 𝐺 ∈ TopGrp ∧ 𝑦𝑆 ) → ( 𝑧𝑋 ↦ ( 𝑦 ( -g𝐺 ) 𝑧 ) ) = ( 𝑧𝑋 ↦ ( 𝑦 ( +g𝐺 ) ( ( invg𝐺 ) ‘ 𝑧 ) ) ) )
50 1 46 grpinvcl ( ( 𝐺 ∈ Grp ∧ 𝑧𝑋 ) → ( ( invg𝐺 ) ‘ 𝑧 ) ∈ 𝑋 )
51 23 50 sylan ( ( ( 𝐺 ∈ TopGrp ∧ 𝑦𝑆 ) ∧ 𝑧𝑋 ) → ( ( invg𝐺 ) ‘ 𝑧 ) ∈ 𝑋 )
52 1 46 grpinvf ( 𝐺 ∈ Grp → ( invg𝐺 ) : 𝑋𝑋 )
53 11 52 syl ( 𝐺 ∈ TopGrp → ( invg𝐺 ) : 𝑋𝑋 )
54 53 adantr ( ( 𝐺 ∈ TopGrp ∧ 𝑦𝑆 ) → ( invg𝐺 ) : 𝑋𝑋 )
55 54 feqmptd ( ( 𝐺 ∈ TopGrp ∧ 𝑦𝑆 ) → ( invg𝐺 ) = ( 𝑧𝑋 ↦ ( ( invg𝐺 ) ‘ 𝑧 ) ) )
56 eqidd ( ( 𝐺 ∈ TopGrp ∧ 𝑦𝑆 ) → ( 𝑤𝑋 ↦ ( 𝑦 ( +g𝐺 ) 𝑤 ) ) = ( 𝑤𝑋 ↦ ( 𝑦 ( +g𝐺 ) 𝑤 ) ) )
57 oveq2 ( 𝑤 = ( ( invg𝐺 ) ‘ 𝑧 ) → ( 𝑦 ( +g𝐺 ) 𝑤 ) = ( 𝑦 ( +g𝐺 ) ( ( invg𝐺 ) ‘ 𝑧 ) ) )
58 51 55 56 57 fmptco ( ( 𝐺 ∈ TopGrp ∧ 𝑦𝑆 ) → ( ( 𝑤𝑋 ↦ ( 𝑦 ( +g𝐺 ) 𝑤 ) ) ∘ ( invg𝐺 ) ) = ( 𝑧𝑋 ↦ ( 𝑦 ( +g𝐺 ) ( ( invg𝐺 ) ‘ 𝑧 ) ) ) )
59 49 58 eqtr4d ( ( 𝐺 ∈ TopGrp ∧ 𝑦𝑆 ) → ( 𝑧𝑋 ↦ ( 𝑦 ( -g𝐺 ) 𝑧 ) ) = ( ( 𝑤𝑋 ↦ ( 𝑦 ( +g𝐺 ) 𝑤 ) ) ∘ ( invg𝐺 ) ) )
60 3 46 grpinvhmeo ( 𝐺 ∈ TopGrp → ( invg𝐺 ) ∈ ( 𝐽 Homeo 𝐽 ) )
61 60 adantr ( ( 𝐺 ∈ TopGrp ∧ 𝑦𝑆 ) → ( invg𝐺 ) ∈ ( 𝐽 Homeo 𝐽 ) )
62 eqid ( 𝑤𝑋 ↦ ( 𝑦 ( +g𝐺 ) 𝑤 ) ) = ( 𝑤𝑋 ↦ ( 𝑦 ( +g𝐺 ) 𝑤 ) )
63 62 1 45 3 tgplacthmeo ( ( 𝐺 ∈ TopGrp ∧ 𝑦𝑋 ) → ( 𝑤𝑋 ↦ ( 𝑦 ( +g𝐺 ) 𝑤 ) ) ∈ ( 𝐽 Homeo 𝐽 ) )
64 25 63 syldan ( ( 𝐺 ∈ TopGrp ∧ 𝑦𝑆 ) → ( 𝑤𝑋 ↦ ( 𝑦 ( +g𝐺 ) 𝑤 ) ) ∈ ( 𝐽 Homeo 𝐽 ) )
65 hmeoco ( ( ( invg𝐺 ) ∈ ( 𝐽 Homeo 𝐽 ) ∧ ( 𝑤𝑋 ↦ ( 𝑦 ( +g𝐺 ) 𝑤 ) ) ∈ ( 𝐽 Homeo 𝐽 ) ) → ( ( 𝑤𝑋 ↦ ( 𝑦 ( +g𝐺 ) 𝑤 ) ) ∘ ( invg𝐺 ) ) ∈ ( 𝐽 Homeo 𝐽 ) )
66 61 64 65 syl2anc ( ( 𝐺 ∈ TopGrp ∧ 𝑦𝑆 ) → ( ( 𝑤𝑋 ↦ ( 𝑦 ( +g𝐺 ) 𝑤 ) ) ∘ ( invg𝐺 ) ) ∈ ( 𝐽 Homeo 𝐽 ) )
67 59 66 eqeltrd ( ( 𝐺 ∈ TopGrp ∧ 𝑦𝑆 ) → ( 𝑧𝑋 ↦ ( 𝑦 ( -g𝐺 ) 𝑧 ) ) ∈ ( 𝐽 Homeo 𝐽 ) )
68 hmeocn ( ( 𝑧𝑋 ↦ ( 𝑦 ( -g𝐺 ) 𝑧 ) ) ∈ ( 𝐽 Homeo 𝐽 ) → ( 𝑧𝑋 ↦ ( 𝑦 ( -g𝐺 ) 𝑧 ) ) ∈ ( 𝐽 Cn 𝐽 ) )
69 67 68 syl ( ( 𝐺 ∈ TopGrp ∧ 𝑦𝑆 ) → ( 𝑧𝑋 ↦ ( 𝑦 ( -g𝐺 ) 𝑧 ) ) ∈ ( 𝐽 Cn 𝐽 ) )
70 toponuni ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = 𝐽 )
71 10 70 syl ( 𝐺 ∈ TopGrp → 𝑋 = 𝐽 )
72 71 adantr ( ( 𝐺 ∈ TopGrp ∧ 𝑦𝑆 ) → 𝑋 = 𝐽 )
73 8 72 sseqtrid ( ( 𝐺 ∈ TopGrp ∧ 𝑦𝑆 ) → 𝑆 𝐽 )
74 4 conncompconn ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 0𝑋 ) → ( 𝐽t 𝑆 ) ∈ Conn )
75 10 13 74 syl2anc ( 𝐺 ∈ TopGrp → ( 𝐽t 𝑆 ) ∈ Conn )
76 75 adantr ( ( 𝐺 ∈ TopGrp ∧ 𝑦𝑆 ) → ( 𝐽t 𝑆 ) ∈ Conn )
77 44 69 73 76 connima ( ( 𝐺 ∈ TopGrp ∧ 𝑦𝑆 ) → ( 𝐽t ( ( 𝑧𝑋 ↦ ( 𝑦 ( -g𝐺 ) 𝑧 ) ) “ 𝑆 ) ) ∈ Conn )
78 4 conncompss ( ( ( ( 𝑧𝑋 ↦ ( 𝑦 ( -g𝐺 ) 𝑧 ) ) “ 𝑆 ) ⊆ 𝑋0 ∈ ( ( 𝑧𝑋 ↦ ( 𝑦 ( -g𝐺 ) 𝑧 ) ) “ 𝑆 ) ∧ ( 𝐽t ( ( 𝑧𝑋 ↦ ( 𝑦 ( -g𝐺 ) 𝑧 ) ) “ 𝑆 ) ) ∈ Conn ) → ( ( 𝑧𝑋 ↦ ( 𝑦 ( -g𝐺 ) 𝑧 ) ) “ 𝑆 ) ⊆ 𝑆 )
79 33 43 77 78 syl3anc ( ( 𝐺 ∈ TopGrp ∧ 𝑦𝑆 ) → ( ( 𝑧𝑋 ↦ ( 𝑦 ( -g𝐺 ) 𝑧 ) ) “ 𝑆 ) ⊆ 𝑆 )
80 21 79 eqsstrrid ( ( 𝐺 ∈ TopGrp ∧ 𝑦𝑆 ) → ran ( 𝑧𝑆 ↦ ( 𝑦 ( -g𝐺 ) 𝑧 ) ) ⊆ 𝑆 )
81 ovex ( 𝑦 ( -g𝐺 ) 𝑧 ) ∈ V
82 81 38 fnmpti ( 𝑧𝑆 ↦ ( 𝑦 ( -g𝐺 ) 𝑧 ) ) Fn 𝑆
83 df-f ( ( 𝑧𝑆 ↦ ( 𝑦 ( -g𝐺 ) 𝑧 ) ) : 𝑆𝑆 ↔ ( ( 𝑧𝑆 ↦ ( 𝑦 ( -g𝐺 ) 𝑧 ) ) Fn 𝑆 ∧ ran ( 𝑧𝑆 ↦ ( 𝑦 ( -g𝐺 ) 𝑧 ) ) ⊆ 𝑆 ) )
84 82 83 mpbiran ( ( 𝑧𝑆 ↦ ( 𝑦 ( -g𝐺 ) 𝑧 ) ) : 𝑆𝑆 ↔ ran ( 𝑧𝑆 ↦ ( 𝑦 ( -g𝐺 ) 𝑧 ) ) ⊆ 𝑆 )
85 80 84 sylibr ( ( 𝐺 ∈ TopGrp ∧ 𝑦𝑆 ) → ( 𝑧𝑆 ↦ ( 𝑦 ( -g𝐺 ) 𝑧 ) ) : 𝑆𝑆 )
86 38 fmpt ( ∀ 𝑧𝑆 ( 𝑦 ( -g𝐺 ) 𝑧 ) ∈ 𝑆 ↔ ( 𝑧𝑆 ↦ ( 𝑦 ( -g𝐺 ) 𝑧 ) ) : 𝑆𝑆 )
87 85 86 sylibr ( ( 𝐺 ∈ TopGrp ∧ 𝑦𝑆 ) → ∀ 𝑧𝑆 ( 𝑦 ( -g𝐺 ) 𝑧 ) ∈ 𝑆 )
88 87 ralrimiva ( 𝐺 ∈ TopGrp → ∀ 𝑦𝑆𝑧𝑆 ( 𝑦 ( -g𝐺 ) 𝑧 ) ∈ 𝑆 )
89 1 28 issubg4 ( 𝐺 ∈ Grp → ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝑆𝑋𝑆 ≠ ∅ ∧ ∀ 𝑦𝑆𝑧𝑆 ( 𝑦 ( -g𝐺 ) 𝑧 ) ∈ 𝑆 ) ) )
90 11 89 syl ( 𝐺 ∈ TopGrp → ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝑆𝑋𝑆 ≠ ∅ ∧ ∀ 𝑦𝑆𝑧𝑆 ( 𝑦 ( -g𝐺 ) 𝑧 ) ∈ 𝑆 ) ) )
91 9 16 88 90 mpbir3and ( 𝐺 ∈ TopGrp → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) )
92 11 adantr ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦𝑋𝑧𝑋 ) ∧ ( 𝑦 ( +g𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → 𝐺 ∈ Grp )
93 eqid ( oppg𝐺 ) = ( oppg𝐺 )
94 93 46 oppginv ( 𝐺 ∈ Grp → ( invg𝐺 ) = ( invg ‘ ( oppg𝐺 ) ) )
95 92 94 syl ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦𝑋𝑧𝑋 ) ∧ ( 𝑦 ( +g𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → ( invg𝐺 ) = ( invg ‘ ( oppg𝐺 ) ) )
96 95 fveq1d ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦𝑋𝑧𝑋 ) ∧ ( 𝑦 ( +g𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → ( ( invg𝐺 ) ‘ ( ( invg𝐺 ) ‘ 𝑦 ) ) = ( ( invg ‘ ( oppg𝐺 ) ) ‘ ( ( invg𝐺 ) ‘ 𝑦 ) ) )
97 simprll ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦𝑋𝑧𝑋 ) ∧ ( 𝑦 ( +g𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → 𝑦𝑋 )
98 1 46 grpinvinv ( ( 𝐺 ∈ Grp ∧ 𝑦𝑋 ) → ( ( invg𝐺 ) ‘ ( ( invg𝐺 ) ‘ 𝑦 ) ) = 𝑦 )
99 92 97 98 syl2anc ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦𝑋𝑧𝑋 ) ∧ ( 𝑦 ( +g𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → ( ( invg𝐺 ) ‘ ( ( invg𝐺 ) ‘ 𝑦 ) ) = 𝑦 )
100 96 99 eqtr3d ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦𝑋𝑧𝑋 ) ∧ ( 𝑦 ( +g𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → ( ( invg ‘ ( oppg𝐺 ) ) ‘ ( ( invg𝐺 ) ‘ 𝑦 ) ) = 𝑦 )
101 100 oveq1d ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦𝑋𝑧𝑋 ) ∧ ( 𝑦 ( +g𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → ( ( ( invg ‘ ( oppg𝐺 ) ) ‘ ( ( invg𝐺 ) ‘ 𝑦 ) ) ( +g ‘ ( oppg𝐺 ) ) 𝑧 ) = ( 𝑦 ( +g ‘ ( oppg𝐺 ) ) 𝑧 ) )
102 eqid ( +g ‘ ( oppg𝐺 ) ) = ( +g ‘ ( oppg𝐺 ) )
103 45 93 102 oppgplus ( 𝑦 ( +g ‘ ( oppg𝐺 ) ) 𝑧 ) = ( 𝑧 ( +g𝐺 ) 𝑦 )
104 101 103 eqtrdi ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦𝑋𝑧𝑋 ) ∧ ( 𝑦 ( +g𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → ( ( ( invg ‘ ( oppg𝐺 ) ) ‘ ( ( invg𝐺 ) ‘ 𝑦 ) ) ( +g ‘ ( oppg𝐺 ) ) 𝑧 ) = ( 𝑧 ( +g𝐺 ) 𝑦 ) )
105 1 46 grpinvcl ( ( 𝐺 ∈ Grp ∧ 𝑦𝑋 ) → ( ( invg𝐺 ) ‘ 𝑦 ) ∈ 𝑋 )
106 92 97 105 syl2anc ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦𝑋𝑧𝑋 ) ∧ ( 𝑦 ( +g𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → ( ( invg𝐺 ) ‘ 𝑦 ) ∈ 𝑋 )
107 simprlr ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦𝑋𝑧𝑋 ) ∧ ( 𝑦 ( +g𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → 𝑧𝑋 )
108 99 oveq1d ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦𝑋𝑧𝑋 ) ∧ ( 𝑦 ( +g𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → ( ( ( invg𝐺 ) ‘ ( ( invg𝐺 ) ‘ 𝑦 ) ) ( +g𝐺 ) 𝑧 ) = ( 𝑦 ( +g𝐺 ) 𝑧 ) )
109 simprr ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦𝑋𝑧𝑋 ) ∧ ( 𝑦 ( +g𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → ( 𝑦 ( +g𝐺 ) 𝑧 ) ∈ 𝑆 )
110 108 109 eqeltrd ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦𝑋𝑧𝑋 ) ∧ ( 𝑦 ( +g𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → ( ( ( invg𝐺 ) ‘ ( ( invg𝐺 ) ‘ 𝑦 ) ) ( +g𝐺 ) 𝑧 ) ∈ 𝑆 )
111 eqid ( 𝐺 ~QG 𝑆 ) = ( 𝐺 ~QG 𝑆 )
112 1 46 45 111 eqgval ( ( 𝐺 ∈ Grp ∧ 𝑆𝑋 ) → ( ( ( invg𝐺 ) ‘ 𝑦 ) ( 𝐺 ~QG 𝑆 ) 𝑧 ↔ ( ( ( invg𝐺 ) ‘ 𝑦 ) ∈ 𝑋𝑧𝑋 ∧ ( ( ( invg𝐺 ) ‘ ( ( invg𝐺 ) ‘ 𝑦 ) ) ( +g𝐺 ) 𝑧 ) ∈ 𝑆 ) ) )
113 92 8 112 sylancl ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦𝑋𝑧𝑋 ) ∧ ( 𝑦 ( +g𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → ( ( ( invg𝐺 ) ‘ 𝑦 ) ( 𝐺 ~QG 𝑆 ) 𝑧 ↔ ( ( ( invg𝐺 ) ‘ 𝑦 ) ∈ 𝑋𝑧𝑋 ∧ ( ( ( invg𝐺 ) ‘ ( ( invg𝐺 ) ‘ 𝑦 ) ) ( +g𝐺 ) 𝑧 ) ∈ 𝑆 ) ) )
114 106 107 110 113 mpbir3and ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦𝑋𝑧𝑋 ) ∧ ( 𝑦 ( +g𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → ( ( invg𝐺 ) ‘ 𝑦 ) ( 𝐺 ~QG 𝑆 ) 𝑧 )
115 1 2 3 4 111 tgpconncompeqg ( ( 𝐺 ∈ TopGrp ∧ ( ( invg𝐺 ) ‘ 𝑦 ) ∈ 𝑋 ) → [ ( ( invg𝐺 ) ‘ 𝑦 ) ] ( 𝐺 ~QG 𝑆 ) = { 𝑥 ∈ 𝒫 𝑋 ∣ ( ( ( invg𝐺 ) ‘ 𝑦 ) ∈ 𝑥 ∧ ( 𝐽t 𝑥 ) ∈ Conn ) } )
116 106 115 syldan ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦𝑋𝑧𝑋 ) ∧ ( 𝑦 ( +g𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → [ ( ( invg𝐺 ) ‘ 𝑦 ) ] ( 𝐺 ~QG 𝑆 ) = { 𝑥 ∈ 𝒫 𝑋 ∣ ( ( ( invg𝐺 ) ‘ 𝑦 ) ∈ 𝑥 ∧ ( 𝐽t 𝑥 ) ∈ Conn ) } )
117 93 oppgtgp ( 𝐺 ∈ TopGrp → ( oppg𝐺 ) ∈ TopGrp )
118 117 adantr ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦𝑋𝑧𝑋 ) ∧ ( 𝑦 ( +g𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → ( oppg𝐺 ) ∈ TopGrp )
119 93 1 oppgbas 𝑋 = ( Base ‘ ( oppg𝐺 ) )
120 93 2 oppgid 0 = ( 0g ‘ ( oppg𝐺 ) )
121 93 3 oppgtopn 𝐽 = ( TopOpen ‘ ( oppg𝐺 ) )
122 eqid ( ( oppg𝐺 ) ~QG 𝑆 ) = ( ( oppg𝐺 ) ~QG 𝑆 )
123 119 120 121 4 122 tgpconncompeqg ( ( ( oppg𝐺 ) ∈ TopGrp ∧ ( ( invg𝐺 ) ‘ 𝑦 ) ∈ 𝑋 ) → [ ( ( invg𝐺 ) ‘ 𝑦 ) ] ( ( oppg𝐺 ) ~QG 𝑆 ) = { 𝑥 ∈ 𝒫 𝑋 ∣ ( ( ( invg𝐺 ) ‘ 𝑦 ) ∈ 𝑥 ∧ ( 𝐽t 𝑥 ) ∈ Conn ) } )
124 118 106 123 syl2anc ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦𝑋𝑧𝑋 ) ∧ ( 𝑦 ( +g𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → [ ( ( invg𝐺 ) ‘ 𝑦 ) ] ( ( oppg𝐺 ) ~QG 𝑆 ) = { 𝑥 ∈ 𝒫 𝑋 ∣ ( ( ( invg𝐺 ) ‘ 𝑦 ) ∈ 𝑥 ∧ ( 𝐽t 𝑥 ) ∈ Conn ) } )
125 116 124 eqtr4d ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦𝑋𝑧𝑋 ) ∧ ( 𝑦 ( +g𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → [ ( ( invg𝐺 ) ‘ 𝑦 ) ] ( 𝐺 ~QG 𝑆 ) = [ ( ( invg𝐺 ) ‘ 𝑦 ) ] ( ( oppg𝐺 ) ~QG 𝑆 ) )
126 125 eleq2d ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦𝑋𝑧𝑋 ) ∧ ( 𝑦 ( +g𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → ( 𝑧 ∈ [ ( ( invg𝐺 ) ‘ 𝑦 ) ] ( 𝐺 ~QG 𝑆 ) ↔ 𝑧 ∈ [ ( ( invg𝐺 ) ‘ 𝑦 ) ] ( ( oppg𝐺 ) ~QG 𝑆 ) ) )
127 vex 𝑧 ∈ V
128 fvex ( ( invg𝐺 ) ‘ 𝑦 ) ∈ V
129 127 128 elec ( 𝑧 ∈ [ ( ( invg𝐺 ) ‘ 𝑦 ) ] ( 𝐺 ~QG 𝑆 ) ↔ ( ( invg𝐺 ) ‘ 𝑦 ) ( 𝐺 ~QG 𝑆 ) 𝑧 )
130 127 128 elec ( 𝑧 ∈ [ ( ( invg𝐺 ) ‘ 𝑦 ) ] ( ( oppg𝐺 ) ~QG 𝑆 ) ↔ ( ( invg𝐺 ) ‘ 𝑦 ) ( ( oppg𝐺 ) ~QG 𝑆 ) 𝑧 )
131 126 129 130 3bitr3g ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦𝑋𝑧𝑋 ) ∧ ( 𝑦 ( +g𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → ( ( ( invg𝐺 ) ‘ 𝑦 ) ( 𝐺 ~QG 𝑆 ) 𝑧 ↔ ( ( invg𝐺 ) ‘ 𝑦 ) ( ( oppg𝐺 ) ~QG 𝑆 ) 𝑧 ) )
132 114 131 mpbid ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦𝑋𝑧𝑋 ) ∧ ( 𝑦 ( +g𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → ( ( invg𝐺 ) ‘ 𝑦 ) ( ( oppg𝐺 ) ~QG 𝑆 ) 𝑧 )
133 eqid ( invg ‘ ( oppg𝐺 ) ) = ( invg ‘ ( oppg𝐺 ) )
134 119 133 102 122 eqgval ( ( ( oppg𝐺 ) ∈ TopGrp ∧ 𝑆𝑋 ) → ( ( ( invg𝐺 ) ‘ 𝑦 ) ( ( oppg𝐺 ) ~QG 𝑆 ) 𝑧 ↔ ( ( ( invg𝐺 ) ‘ 𝑦 ) ∈ 𝑋𝑧𝑋 ∧ ( ( ( invg ‘ ( oppg𝐺 ) ) ‘ ( ( invg𝐺 ) ‘ 𝑦 ) ) ( +g ‘ ( oppg𝐺 ) ) 𝑧 ) ∈ 𝑆 ) ) )
135 118 8 134 sylancl ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦𝑋𝑧𝑋 ) ∧ ( 𝑦 ( +g𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → ( ( ( invg𝐺 ) ‘ 𝑦 ) ( ( oppg𝐺 ) ~QG 𝑆 ) 𝑧 ↔ ( ( ( invg𝐺 ) ‘ 𝑦 ) ∈ 𝑋𝑧𝑋 ∧ ( ( ( invg ‘ ( oppg𝐺 ) ) ‘ ( ( invg𝐺 ) ‘ 𝑦 ) ) ( +g ‘ ( oppg𝐺 ) ) 𝑧 ) ∈ 𝑆 ) ) )
136 132 135 mpbid ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦𝑋𝑧𝑋 ) ∧ ( 𝑦 ( +g𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → ( ( ( invg𝐺 ) ‘ 𝑦 ) ∈ 𝑋𝑧𝑋 ∧ ( ( ( invg ‘ ( oppg𝐺 ) ) ‘ ( ( invg𝐺 ) ‘ 𝑦 ) ) ( +g ‘ ( oppg𝐺 ) ) 𝑧 ) ∈ 𝑆 ) )
137 136 simp3d ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦𝑋𝑧𝑋 ) ∧ ( 𝑦 ( +g𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → ( ( ( invg ‘ ( oppg𝐺 ) ) ‘ ( ( invg𝐺 ) ‘ 𝑦 ) ) ( +g ‘ ( oppg𝐺 ) ) 𝑧 ) ∈ 𝑆 )
138 104 137 eqeltrrd ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦𝑋𝑧𝑋 ) ∧ ( 𝑦 ( +g𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → ( 𝑧 ( +g𝐺 ) 𝑦 ) ∈ 𝑆 )
139 138 expr ( ( 𝐺 ∈ TopGrp ∧ ( 𝑦𝑋𝑧𝑋 ) ) → ( ( 𝑦 ( +g𝐺 ) 𝑧 ) ∈ 𝑆 → ( 𝑧 ( +g𝐺 ) 𝑦 ) ∈ 𝑆 ) )
140 139 ralrimivva ( 𝐺 ∈ TopGrp → ∀ 𝑦𝑋𝑧𝑋 ( ( 𝑦 ( +g𝐺 ) 𝑧 ) ∈ 𝑆 → ( 𝑧 ( +g𝐺 ) 𝑦 ) ∈ 𝑆 ) )
141 1 45 isnsg2 ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ↔ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑦𝑋𝑧𝑋 ( ( 𝑦 ( +g𝐺 ) 𝑧 ) ∈ 𝑆 → ( 𝑧 ( +g𝐺 ) 𝑦 ) ∈ 𝑆 ) ) )
142 91 140 141 sylanbrc ( 𝐺 ∈ TopGrp → 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) )