Step |
Hyp |
Ref |
Expression |
1 |
|
tgpconncomp.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
tgpconncomp.z |
⊢ 0 = ( 0g ‘ 𝐺 ) |
3 |
|
tgpconncomp.j |
⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) |
4 |
|
tgpconncomp.s |
⊢ 𝑆 = ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 0 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } |
5 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 0 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } ⊆ 𝒫 𝑋 |
6 |
|
sspwuni |
⊢ ( { 𝑥 ∈ 𝒫 𝑋 ∣ ( 0 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } ⊆ 𝒫 𝑋 ↔ ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 0 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } ⊆ 𝑋 ) |
7 |
5 6
|
mpbi |
⊢ ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 0 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } ⊆ 𝑋 |
8 |
4 7
|
eqsstri |
⊢ 𝑆 ⊆ 𝑋 |
9 |
8
|
a1i |
⊢ ( 𝐺 ∈ TopGrp → 𝑆 ⊆ 𝑋 ) |
10 |
3 1
|
tgptopon |
⊢ ( 𝐺 ∈ TopGrp → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
11 |
|
tgpgrp |
⊢ ( 𝐺 ∈ TopGrp → 𝐺 ∈ Grp ) |
12 |
1 2
|
grpidcl |
⊢ ( 𝐺 ∈ Grp → 0 ∈ 𝑋 ) |
13 |
11 12
|
syl |
⊢ ( 𝐺 ∈ TopGrp → 0 ∈ 𝑋 ) |
14 |
4
|
conncompid |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 0 ∈ 𝑋 ) → 0 ∈ 𝑆 ) |
15 |
10 13 14
|
syl2anc |
⊢ ( 𝐺 ∈ TopGrp → 0 ∈ 𝑆 ) |
16 |
15
|
ne0d |
⊢ ( 𝐺 ∈ TopGrp → 𝑆 ≠ ∅ ) |
17 |
|
df-ima |
⊢ ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) “ 𝑆 ) = ran ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) ↾ 𝑆 ) |
18 |
|
resmpt |
⊢ ( 𝑆 ⊆ 𝑋 → ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) ↾ 𝑆 ) = ( 𝑧 ∈ 𝑆 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) ) |
19 |
8 18
|
ax-mp |
⊢ ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) ↾ 𝑆 ) = ( 𝑧 ∈ 𝑆 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) |
20 |
19
|
rneqi |
⊢ ran ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) ↾ 𝑆 ) = ran ( 𝑧 ∈ 𝑆 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) |
21 |
17 20
|
eqtri |
⊢ ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) “ 𝑆 ) = ran ( 𝑧 ∈ 𝑆 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) |
22 |
|
imassrn |
⊢ ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) “ 𝑆 ) ⊆ ran ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) |
23 |
11
|
adantr |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑆 ) → 𝐺 ∈ Grp ) |
24 |
23
|
adantr |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝑋 ) → 𝐺 ∈ Grp ) |
25 |
9
|
sselda |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ 𝑋 ) |
26 |
25
|
adantr |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝑋 ) → 𝑦 ∈ 𝑋 ) |
27 |
|
simpr |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝑋 ) → 𝑧 ∈ 𝑋 ) |
28 |
|
eqid |
⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) |
29 |
1 28
|
grpsubcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) → ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ∈ 𝑋 ) |
30 |
24 26 27 29
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ∈ 𝑋 ) |
31 |
30
|
fmpttd |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑆 ) → ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) : 𝑋 ⟶ 𝑋 ) |
32 |
31
|
frnd |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑆 ) → ran ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) ⊆ 𝑋 ) |
33 |
22 32
|
sstrid |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) “ 𝑆 ) ⊆ 𝑋 ) |
34 |
1 2 28
|
grpsubid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝑋 ) → ( 𝑦 ( -g ‘ 𝐺 ) 𝑦 ) = 0 ) |
35 |
23 25 34
|
syl2anc |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑆 ) → ( 𝑦 ( -g ‘ 𝐺 ) 𝑦 ) = 0 ) |
36 |
|
simpr |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ 𝑆 ) |
37 |
|
ovex |
⊢ ( 𝑦 ( -g ‘ 𝐺 ) 𝑦 ) ∈ V |
38 |
|
eqid |
⊢ ( 𝑧 ∈ 𝑆 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) = ( 𝑧 ∈ 𝑆 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) |
39 |
|
oveq2 |
⊢ ( 𝑧 = 𝑦 → ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) = ( 𝑦 ( -g ‘ 𝐺 ) 𝑦 ) ) |
40 |
38 39
|
elrnmpt1s |
⊢ ( ( 𝑦 ∈ 𝑆 ∧ ( 𝑦 ( -g ‘ 𝐺 ) 𝑦 ) ∈ V ) → ( 𝑦 ( -g ‘ 𝐺 ) 𝑦 ) ∈ ran ( 𝑧 ∈ 𝑆 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) ) |
41 |
36 37 40
|
sylancl |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑆 ) → ( 𝑦 ( -g ‘ 𝐺 ) 𝑦 ) ∈ ran ( 𝑧 ∈ 𝑆 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) ) |
42 |
35 41
|
eqeltrrd |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑆 ) → 0 ∈ ran ( 𝑧 ∈ 𝑆 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) ) |
43 |
42 21
|
eleqtrrdi |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑆 ) → 0 ∈ ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) “ 𝑆 ) ) |
44 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
45 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
46 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
47 |
1 45 46 28
|
grpsubval |
⊢ ( ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) → ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) = ( 𝑦 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) |
48 |
25 47
|
sylan |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) = ( 𝑦 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) |
49 |
48
|
mpteq2dva |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑆 ) → ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) = ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) ) |
50 |
1 46
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑋 ) |
51 |
23 50
|
sylan |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑋 ) |
52 |
1 46
|
grpinvf |
⊢ ( 𝐺 ∈ Grp → ( invg ‘ 𝐺 ) : 𝑋 ⟶ 𝑋 ) |
53 |
11 52
|
syl |
⊢ ( 𝐺 ∈ TopGrp → ( invg ‘ 𝐺 ) : 𝑋 ⟶ 𝑋 ) |
54 |
53
|
adantr |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑆 ) → ( invg ‘ 𝐺 ) : 𝑋 ⟶ 𝑋 ) |
55 |
54
|
feqmptd |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑆 ) → ( invg ‘ 𝐺 ) = ( 𝑧 ∈ 𝑋 ↦ ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) |
56 |
|
eqidd |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑆 ) → ( 𝑤 ∈ 𝑋 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑤 ) ) = ( 𝑤 ∈ 𝑋 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑤 ) ) ) |
57 |
|
oveq2 |
⊢ ( 𝑤 = ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑤 ) = ( 𝑦 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) |
58 |
51 55 56 57
|
fmptco |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝑤 ∈ 𝑋 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑤 ) ) ∘ ( invg ‘ 𝐺 ) ) = ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) ) |
59 |
49 58
|
eqtr4d |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑆 ) → ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) = ( ( 𝑤 ∈ 𝑋 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑤 ) ) ∘ ( invg ‘ 𝐺 ) ) ) |
60 |
3 46
|
grpinvhmeo |
⊢ ( 𝐺 ∈ TopGrp → ( invg ‘ 𝐺 ) ∈ ( 𝐽 Homeo 𝐽 ) ) |
61 |
60
|
adantr |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑆 ) → ( invg ‘ 𝐺 ) ∈ ( 𝐽 Homeo 𝐽 ) ) |
62 |
|
eqid |
⊢ ( 𝑤 ∈ 𝑋 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑤 ) ) = ( 𝑤 ∈ 𝑋 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑤 ) ) |
63 |
62 1 45 3
|
tgplacthmeo |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑋 ) → ( 𝑤 ∈ 𝑋 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑤 ) ) ∈ ( 𝐽 Homeo 𝐽 ) ) |
64 |
25 63
|
syldan |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑆 ) → ( 𝑤 ∈ 𝑋 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑤 ) ) ∈ ( 𝐽 Homeo 𝐽 ) ) |
65 |
|
hmeoco |
⊢ ( ( ( invg ‘ 𝐺 ) ∈ ( 𝐽 Homeo 𝐽 ) ∧ ( 𝑤 ∈ 𝑋 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑤 ) ) ∈ ( 𝐽 Homeo 𝐽 ) ) → ( ( 𝑤 ∈ 𝑋 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑤 ) ) ∘ ( invg ‘ 𝐺 ) ) ∈ ( 𝐽 Homeo 𝐽 ) ) |
66 |
61 64 65
|
syl2anc |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝑤 ∈ 𝑋 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑤 ) ) ∘ ( invg ‘ 𝐺 ) ) ∈ ( 𝐽 Homeo 𝐽 ) ) |
67 |
59 66
|
eqeltrd |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑆 ) → ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) ∈ ( 𝐽 Homeo 𝐽 ) ) |
68 |
|
hmeocn |
⊢ ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) ∈ ( 𝐽 Homeo 𝐽 ) → ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
69 |
67 68
|
syl |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑆 ) → ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
70 |
|
toponuni |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
71 |
10 70
|
syl |
⊢ ( 𝐺 ∈ TopGrp → 𝑋 = ∪ 𝐽 ) |
72 |
71
|
adantr |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑆 ) → 𝑋 = ∪ 𝐽 ) |
73 |
8 72
|
sseqtrid |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑆 ) → 𝑆 ⊆ ∪ 𝐽 ) |
74 |
4
|
conncompconn |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 0 ∈ 𝑋 ) → ( 𝐽 ↾t 𝑆 ) ∈ Conn ) |
75 |
10 13 74
|
syl2anc |
⊢ ( 𝐺 ∈ TopGrp → ( 𝐽 ↾t 𝑆 ) ∈ Conn ) |
76 |
75
|
adantr |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑆 ) → ( 𝐽 ↾t 𝑆 ) ∈ Conn ) |
77 |
44 69 73 76
|
connima |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑆 ) → ( 𝐽 ↾t ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) “ 𝑆 ) ) ∈ Conn ) |
78 |
4
|
conncompss |
⊢ ( ( ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) “ 𝑆 ) ⊆ 𝑋 ∧ 0 ∈ ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) “ 𝑆 ) ∧ ( 𝐽 ↾t ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) “ 𝑆 ) ) ∈ Conn ) → ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) “ 𝑆 ) ⊆ 𝑆 ) |
79 |
33 43 77 78
|
syl3anc |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) “ 𝑆 ) ⊆ 𝑆 ) |
80 |
21 79
|
eqsstrrid |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑆 ) → ran ( 𝑧 ∈ 𝑆 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) ⊆ 𝑆 ) |
81 |
|
ovex |
⊢ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ∈ V |
82 |
81 38
|
fnmpti |
⊢ ( 𝑧 ∈ 𝑆 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) Fn 𝑆 |
83 |
|
df-f |
⊢ ( ( 𝑧 ∈ 𝑆 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) : 𝑆 ⟶ 𝑆 ↔ ( ( 𝑧 ∈ 𝑆 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) Fn 𝑆 ∧ ran ( 𝑧 ∈ 𝑆 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) ⊆ 𝑆 ) ) |
84 |
82 83
|
mpbiran |
⊢ ( ( 𝑧 ∈ 𝑆 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) : 𝑆 ⟶ 𝑆 ↔ ran ( 𝑧 ∈ 𝑆 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) ⊆ 𝑆 ) |
85 |
80 84
|
sylibr |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑆 ) → ( 𝑧 ∈ 𝑆 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) : 𝑆 ⟶ 𝑆 ) |
86 |
38
|
fmpt |
⊢ ( ∀ 𝑧 ∈ 𝑆 ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ↔ ( 𝑧 ∈ 𝑆 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) : 𝑆 ⟶ 𝑆 ) |
87 |
85 86
|
sylibr |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑆 ) → ∀ 𝑧 ∈ 𝑆 ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) |
88 |
87
|
ralrimiva |
⊢ ( 𝐺 ∈ TopGrp → ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) |
89 |
1 28
|
issubg4 |
⊢ ( 𝐺 ∈ Grp → ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) ) |
90 |
11 89
|
syl |
⊢ ( 𝐺 ∈ TopGrp → ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) ) |
91 |
9 16 88 90
|
mpbir3and |
⊢ ( 𝐺 ∈ TopGrp → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |
92 |
11
|
adantr |
⊢ ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → 𝐺 ∈ Grp ) |
93 |
|
eqid |
⊢ ( oppg ‘ 𝐺 ) = ( oppg ‘ 𝐺 ) |
94 |
93 46
|
oppginv |
⊢ ( 𝐺 ∈ Grp → ( invg ‘ 𝐺 ) = ( invg ‘ ( oppg ‘ 𝐺 ) ) ) |
95 |
92 94
|
syl |
⊢ ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → ( invg ‘ 𝐺 ) = ( invg ‘ ( oppg ‘ 𝐺 ) ) ) |
96 |
95
|
fveq1d |
⊢ ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → ( ( invg ‘ 𝐺 ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) = ( ( invg ‘ ( oppg ‘ 𝐺 ) ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ) |
97 |
|
simprll |
⊢ ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → 𝑦 ∈ 𝑋 ) |
98 |
1 46
|
grpinvinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) = 𝑦 ) |
99 |
92 97 98
|
syl2anc |
⊢ ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → ( ( invg ‘ 𝐺 ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) = 𝑦 ) |
100 |
96 99
|
eqtr3d |
⊢ ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → ( ( invg ‘ ( oppg ‘ 𝐺 ) ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) = 𝑦 ) |
101 |
100
|
oveq1d |
⊢ ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → ( ( ( invg ‘ ( oppg ‘ 𝐺 ) ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ( +g ‘ ( oppg ‘ 𝐺 ) ) 𝑧 ) = ( 𝑦 ( +g ‘ ( oppg ‘ 𝐺 ) ) 𝑧 ) ) |
102 |
|
eqid |
⊢ ( +g ‘ ( oppg ‘ 𝐺 ) ) = ( +g ‘ ( oppg ‘ 𝐺 ) ) |
103 |
45 93 102
|
oppgplus |
⊢ ( 𝑦 ( +g ‘ ( oppg ‘ 𝐺 ) ) 𝑧 ) = ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 ) |
104 |
101 103
|
eqtrdi |
⊢ ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → ( ( ( invg ‘ ( oppg ‘ 𝐺 ) ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ( +g ‘ ( oppg ‘ 𝐺 ) ) 𝑧 ) = ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 ) ) |
105 |
1 46
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑋 ) |
106 |
92 97 105
|
syl2anc |
⊢ ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑋 ) |
107 |
|
simprlr |
⊢ ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → 𝑧 ∈ 𝑋 ) |
108 |
99
|
oveq1d |
⊢ ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) |
109 |
|
simprr |
⊢ ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) |
110 |
108 109
|
eqeltrd |
⊢ ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) |
111 |
|
eqid |
⊢ ( 𝐺 ~QG 𝑆 ) = ( 𝐺 ~QG 𝑆 ) |
112 |
1 46 45 111
|
eqgval |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝑋 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( 𝐺 ~QG 𝑆 ) 𝑧 ↔ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) ) |
113 |
92 8 112
|
sylancl |
⊢ ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( 𝐺 ~QG 𝑆 ) 𝑧 ↔ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) ) |
114 |
106 107 110 113
|
mpbir3and |
⊢ ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( 𝐺 ~QG 𝑆 ) 𝑧 ) |
115 |
1 2 3 4 111
|
tgpconncompeqg |
⊢ ( ( 𝐺 ∈ TopGrp ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑋 ) → [ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ] ( 𝐺 ~QG 𝑆 ) = ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } ) |
116 |
106 115
|
syldan |
⊢ ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → [ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ] ( 𝐺 ~QG 𝑆 ) = ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } ) |
117 |
93
|
oppgtgp |
⊢ ( 𝐺 ∈ TopGrp → ( oppg ‘ 𝐺 ) ∈ TopGrp ) |
118 |
117
|
adantr |
⊢ ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → ( oppg ‘ 𝐺 ) ∈ TopGrp ) |
119 |
93 1
|
oppgbas |
⊢ 𝑋 = ( Base ‘ ( oppg ‘ 𝐺 ) ) |
120 |
93 2
|
oppgid |
⊢ 0 = ( 0g ‘ ( oppg ‘ 𝐺 ) ) |
121 |
93 3
|
oppgtopn |
⊢ 𝐽 = ( TopOpen ‘ ( oppg ‘ 𝐺 ) ) |
122 |
|
eqid |
⊢ ( ( oppg ‘ 𝐺 ) ~QG 𝑆 ) = ( ( oppg ‘ 𝐺 ) ~QG 𝑆 ) |
123 |
119 120 121 4 122
|
tgpconncompeqg |
⊢ ( ( ( oppg ‘ 𝐺 ) ∈ TopGrp ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑋 ) → [ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ] ( ( oppg ‘ 𝐺 ) ~QG 𝑆 ) = ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } ) |
124 |
118 106 123
|
syl2anc |
⊢ ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → [ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ] ( ( oppg ‘ 𝐺 ) ~QG 𝑆 ) = ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } ) |
125 |
116 124
|
eqtr4d |
⊢ ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → [ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ] ( 𝐺 ~QG 𝑆 ) = [ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ] ( ( oppg ‘ 𝐺 ) ~QG 𝑆 ) ) |
126 |
125
|
eleq2d |
⊢ ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → ( 𝑧 ∈ [ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ] ( 𝐺 ~QG 𝑆 ) ↔ 𝑧 ∈ [ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ] ( ( oppg ‘ 𝐺 ) ~QG 𝑆 ) ) ) |
127 |
|
vex |
⊢ 𝑧 ∈ V |
128 |
|
fvex |
⊢ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ V |
129 |
127 128
|
elec |
⊢ ( 𝑧 ∈ [ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ] ( 𝐺 ~QG 𝑆 ) ↔ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( 𝐺 ~QG 𝑆 ) 𝑧 ) |
130 |
127 128
|
elec |
⊢ ( 𝑧 ∈ [ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ] ( ( oppg ‘ 𝐺 ) ~QG 𝑆 ) ↔ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( ( oppg ‘ 𝐺 ) ~QG 𝑆 ) 𝑧 ) |
131 |
126 129 130
|
3bitr3g |
⊢ ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( 𝐺 ~QG 𝑆 ) 𝑧 ↔ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( ( oppg ‘ 𝐺 ) ~QG 𝑆 ) 𝑧 ) ) |
132 |
114 131
|
mpbid |
⊢ ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( ( oppg ‘ 𝐺 ) ~QG 𝑆 ) 𝑧 ) |
133 |
|
eqid |
⊢ ( invg ‘ ( oppg ‘ 𝐺 ) ) = ( invg ‘ ( oppg ‘ 𝐺 ) ) |
134 |
119 133 102 122
|
eqgval |
⊢ ( ( ( oppg ‘ 𝐺 ) ∈ TopGrp ∧ 𝑆 ⊆ 𝑋 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( ( oppg ‘ 𝐺 ) ~QG 𝑆 ) 𝑧 ↔ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ ( ( ( invg ‘ ( oppg ‘ 𝐺 ) ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ( +g ‘ ( oppg ‘ 𝐺 ) ) 𝑧 ) ∈ 𝑆 ) ) ) |
135 |
118 8 134
|
sylancl |
⊢ ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( ( oppg ‘ 𝐺 ) ~QG 𝑆 ) 𝑧 ↔ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ ( ( ( invg ‘ ( oppg ‘ 𝐺 ) ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ( +g ‘ ( oppg ‘ 𝐺 ) ) 𝑧 ) ∈ 𝑆 ) ) ) |
136 |
132 135
|
mpbid |
⊢ ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ ( ( ( invg ‘ ( oppg ‘ 𝐺 ) ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ( +g ‘ ( oppg ‘ 𝐺 ) ) 𝑧 ) ∈ 𝑆 ) ) |
137 |
136
|
simp3d |
⊢ ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → ( ( ( invg ‘ ( oppg ‘ 𝐺 ) ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ( +g ‘ ( oppg ‘ 𝐺 ) ) 𝑧 ) ∈ 𝑆 ) |
138 |
104 137
|
eqeltrrd |
⊢ ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) |
139 |
138
|
expr |
⊢ ( ( 𝐺 ∈ TopGrp ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 → ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) ) |
140 |
139
|
ralrimivva |
⊢ ( 𝐺 ∈ TopGrp → ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 → ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) ) |
141 |
1 45
|
isnsg2 |
⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ↔ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 → ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) ) ) |
142 |
91 140 141
|
sylanbrc |
⊢ ( 𝐺 ∈ TopGrp → 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ) |