Description: Topology of an opposite group. (Contributed by Mario Carneiro, 17-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppgbas.1 | ⊢ 𝑂 = ( oppg ‘ 𝑅 ) | |
| oppgtopn.2 | ⊢ 𝐽 = ( TopOpen ‘ 𝑅 ) | ||
| Assertion | oppgtopn | ⊢ 𝐽 = ( TopOpen ‘ 𝑂 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppgbas.1 | ⊢ 𝑂 = ( oppg ‘ 𝑅 ) | |
| 2 | oppgtopn.2 | ⊢ 𝐽 = ( TopOpen ‘ 𝑅 ) | |
| 3 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 4 | eqid | ⊢ ( TopSet ‘ 𝑅 ) = ( TopSet ‘ 𝑅 ) | |
| 5 | 3 4 | topnval | ⊢ ( ( TopSet ‘ 𝑅 ) ↾t ( Base ‘ 𝑅 ) ) = ( TopOpen ‘ 𝑅 ) |
| 6 | 1 3 | oppgbas | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑂 ) |
| 7 | 1 4 | oppgtset | ⊢ ( TopSet ‘ 𝑅 ) = ( TopSet ‘ 𝑂 ) |
| 8 | 6 7 | topnval | ⊢ ( ( TopSet ‘ 𝑅 ) ↾t ( Base ‘ 𝑅 ) ) = ( TopOpen ‘ 𝑂 ) |
| 9 | 2 5 8 | 3eqtr2i | ⊢ 𝐽 = ( TopOpen ‘ 𝑂 ) |