| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tgpconncomp.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
| 2 |
|
tgpconncomp.z |
⊢ 0 = ( 0g ‘ 𝐺 ) |
| 3 |
|
tgpconncomp.j |
⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) |
| 4 |
|
tgpconncomp.s |
⊢ 𝑆 = ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 0 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } |
| 5 |
|
tgpconncompeqg.r |
⊢ ∼ = ( 𝐺 ~QG 𝑆 ) |
| 6 |
|
dfec2 |
⊢ ( 𝐴 ∈ 𝑋 → [ 𝐴 ] ∼ = { 𝑧 ∣ 𝐴 ∼ 𝑧 } ) |
| 7 |
6
|
adantl |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → [ 𝐴 ] ∼ = { 𝑧 ∣ 𝐴 ∼ 𝑧 } ) |
| 8 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 0 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } ⊆ 𝒫 𝑋 |
| 9 |
|
sspwuni |
⊢ ( { 𝑥 ∈ 𝒫 𝑋 ∣ ( 0 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } ⊆ 𝒫 𝑋 ↔ ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 0 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } ⊆ 𝑋 ) |
| 10 |
8 9
|
mpbi |
⊢ ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 0 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } ⊆ 𝑋 |
| 11 |
4 10
|
eqsstri |
⊢ 𝑆 ⊆ 𝑋 |
| 12 |
11
|
a1i |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → 𝑆 ⊆ 𝑋 ) |
| 13 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
| 14 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 15 |
1 13 14 5
|
eqgval |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ⊆ 𝑋 ) → ( 𝐴 ∼ 𝑧 ↔ ( 𝐴 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) ) |
| 16 |
12 15
|
syldan |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ∼ 𝑧 ↔ ( 𝐴 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) ) |
| 17 |
|
simp2 |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) → 𝑧 ∈ 𝑋 ) |
| 18 |
16 17
|
biimtrdi |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ∼ 𝑧 → 𝑧 ∈ 𝑋 ) ) |
| 19 |
18
|
abssdv |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → { 𝑧 ∣ 𝐴 ∼ 𝑧 } ⊆ 𝑋 ) |
| 20 |
7 19
|
eqsstrd |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → [ 𝐴 ] ∼ ⊆ 𝑋 ) |
| 21 |
|
simpr |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → 𝐴 ∈ 𝑋 ) |
| 22 |
|
tgpgrp |
⊢ ( 𝐺 ∈ TopGrp → 𝐺 ∈ Grp ) |
| 23 |
1 14 2 13
|
grplinv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ( +g ‘ 𝐺 ) 𝐴 ) = 0 ) |
| 24 |
22 23
|
sylan |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ( +g ‘ 𝐺 ) 𝐴 ) = 0 ) |
| 25 |
3 1
|
tgptopon |
⊢ ( 𝐺 ∈ TopGrp → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 26 |
25
|
adantr |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 27 |
22
|
adantr |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → 𝐺 ∈ Grp ) |
| 28 |
1 2
|
grpidcl |
⊢ ( 𝐺 ∈ Grp → 0 ∈ 𝑋 ) |
| 29 |
27 28
|
syl |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → 0 ∈ 𝑋 ) |
| 30 |
4
|
conncompid |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 0 ∈ 𝑋 ) → 0 ∈ 𝑆 ) |
| 31 |
26 29 30
|
syl2anc |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → 0 ∈ 𝑆 ) |
| 32 |
24 31
|
eqeltrd |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ( +g ‘ 𝐺 ) 𝐴 ) ∈ 𝑆 ) |
| 33 |
1 13 14 5
|
eqgval |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ⊆ 𝑋 ) → ( 𝐴 ∼ 𝐴 ↔ ( 𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ( +g ‘ 𝐺 ) 𝐴 ) ∈ 𝑆 ) ) ) |
| 34 |
12 33
|
syldan |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ∼ 𝐴 ↔ ( 𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ( +g ‘ 𝐺 ) 𝐴 ) ∈ 𝑆 ) ) ) |
| 35 |
21 21 32 34
|
mpbir3and |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → 𝐴 ∼ 𝐴 ) |
| 36 |
|
elecg |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ∈ [ 𝐴 ] ∼ ↔ 𝐴 ∼ 𝐴 ) ) |
| 37 |
21 21 36
|
syl2anc |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ∈ [ 𝐴 ] ∼ ↔ 𝐴 ∼ 𝐴 ) ) |
| 38 |
35 37
|
mpbird |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → 𝐴 ∈ [ 𝐴 ] ∼ ) |
| 39 |
1 5 14
|
eqglact |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → [ 𝐴 ] ∼ = ( ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑆 ) ) |
| 40 |
11 39
|
mp3an2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → [ 𝐴 ] ∼ = ( ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑆 ) ) |
| 41 |
22 40
|
sylan |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → [ 𝐴 ] ∼ = ( ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑆 ) ) |
| 42 |
41
|
oveq2d |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐽 ↾t [ 𝐴 ] ∼ ) = ( 𝐽 ↾t ( ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑆 ) ) ) |
| 43 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 44 |
|
eqid |
⊢ ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) = ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) |
| 45 |
44 1 14 3
|
tgplacthmeo |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) ∈ ( 𝐽 Homeo 𝐽 ) ) |
| 46 |
|
hmeocn |
⊢ ( ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) ∈ ( 𝐽 Homeo 𝐽 ) → ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 47 |
45 46
|
syl |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 48 |
|
toponuni |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 49 |
26 48
|
syl |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 50 |
11 49
|
sseqtrid |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → 𝑆 ⊆ ∪ 𝐽 ) |
| 51 |
4
|
conncompconn |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 0 ∈ 𝑋 ) → ( 𝐽 ↾t 𝑆 ) ∈ Conn ) |
| 52 |
26 29 51
|
syl2anc |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐽 ↾t 𝑆 ) ∈ Conn ) |
| 53 |
43 47 50 52
|
connima |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐽 ↾t ( ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑆 ) ) ∈ Conn ) |
| 54 |
42 53
|
eqeltrd |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐽 ↾t [ 𝐴 ] ∼ ) ∈ Conn ) |
| 55 |
|
eqid |
⊢ ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } = ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } |
| 56 |
55
|
conncompss |
⊢ ( ( [ 𝐴 ] ∼ ⊆ 𝑋 ∧ 𝐴 ∈ [ 𝐴 ] ∼ ∧ ( 𝐽 ↾t [ 𝐴 ] ∼ ) ∈ Conn ) → [ 𝐴 ] ∼ ⊆ ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } ) |
| 57 |
20 38 54 56
|
syl3anc |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → [ 𝐴 ] ∼ ⊆ ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } ) |
| 58 |
|
elpwi |
⊢ ( 𝑦 ∈ 𝒫 𝑋 → 𝑦 ⊆ 𝑋 ) |
| 59 |
44
|
mptpreima |
⊢ ( ◡ ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑦 ) = { 𝑧 ∈ 𝑋 ∣ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑦 } |
| 60 |
59
|
ssrab3 |
⊢ ( ◡ ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑦 ) ⊆ 𝑋 |
| 61 |
29
|
adantr |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ⊆ 𝑋 ∧ ( 𝐴 ∈ 𝑦 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Conn ) ) ) → 0 ∈ 𝑋 ) |
| 62 |
1 14 2
|
grprid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ( +g ‘ 𝐺 ) 0 ) = 𝐴 ) |
| 63 |
22 62
|
sylan |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ( +g ‘ 𝐺 ) 0 ) = 𝐴 ) |
| 64 |
63
|
adantr |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ⊆ 𝑋 ∧ ( 𝐴 ∈ 𝑦 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Conn ) ) ) → ( 𝐴 ( +g ‘ 𝐺 ) 0 ) = 𝐴 ) |
| 65 |
|
simprrl |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ⊆ 𝑋 ∧ ( 𝐴 ∈ 𝑦 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Conn ) ) ) → 𝐴 ∈ 𝑦 ) |
| 66 |
64 65
|
eqeltrd |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ⊆ 𝑋 ∧ ( 𝐴 ∈ 𝑦 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Conn ) ) ) → ( 𝐴 ( +g ‘ 𝐺 ) 0 ) ∈ 𝑦 ) |
| 67 |
|
oveq2 |
⊢ ( 𝑧 = 0 → ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝐴 ( +g ‘ 𝐺 ) 0 ) ) |
| 68 |
67
|
eleq1d |
⊢ ( 𝑧 = 0 → ( ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑦 ↔ ( 𝐴 ( +g ‘ 𝐺 ) 0 ) ∈ 𝑦 ) ) |
| 69 |
68 59
|
elrab2 |
⊢ ( 0 ∈ ( ◡ ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑦 ) ↔ ( 0 ∈ 𝑋 ∧ ( 𝐴 ( +g ‘ 𝐺 ) 0 ) ∈ 𝑦 ) ) |
| 70 |
61 66 69
|
sylanbrc |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ⊆ 𝑋 ∧ ( 𝐴 ∈ 𝑦 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Conn ) ) ) → 0 ∈ ( ◡ ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑦 ) ) |
| 71 |
|
hmeocnvcn |
⊢ ( ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) ∈ ( 𝐽 Homeo 𝐽 ) → ◡ ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 72 |
45 71
|
syl |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ◡ ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 73 |
72
|
adantr |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ⊆ 𝑋 ∧ ( 𝐴 ∈ 𝑦 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Conn ) ) ) → ◡ ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 74 |
|
simprl |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ⊆ 𝑋 ∧ ( 𝐴 ∈ 𝑦 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Conn ) ) ) → 𝑦 ⊆ 𝑋 ) |
| 75 |
49
|
adantr |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ⊆ 𝑋 ∧ ( 𝐴 ∈ 𝑦 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Conn ) ) ) → 𝑋 = ∪ 𝐽 ) |
| 76 |
74 75
|
sseqtrd |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ⊆ 𝑋 ∧ ( 𝐴 ∈ 𝑦 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Conn ) ) ) → 𝑦 ⊆ ∪ 𝐽 ) |
| 77 |
|
simprrr |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ⊆ 𝑋 ∧ ( 𝐴 ∈ 𝑦 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Conn ) ) ) → ( 𝐽 ↾t 𝑦 ) ∈ Conn ) |
| 78 |
43 73 76 77
|
connima |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ⊆ 𝑋 ∧ ( 𝐴 ∈ 𝑦 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Conn ) ) ) → ( 𝐽 ↾t ( ◡ ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑦 ) ) ∈ Conn ) |
| 79 |
4
|
conncompss |
⊢ ( ( ( ◡ ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑦 ) ⊆ 𝑋 ∧ 0 ∈ ( ◡ ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑦 ) ∧ ( 𝐽 ↾t ( ◡ ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑦 ) ) ∈ Conn ) → ( ◡ ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑦 ) ⊆ 𝑆 ) |
| 80 |
60 70 78 79
|
mp3an2i |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ⊆ 𝑋 ∧ ( 𝐴 ∈ 𝑦 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Conn ) ) ) → ( ◡ ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑦 ) ⊆ 𝑆 ) |
| 81 |
|
eqid |
⊢ ( 𝑔 ∈ 𝑋 ↦ ( 𝑧 ∈ 𝑋 ↦ ( 𝑔 ( +g ‘ 𝐺 ) 𝑧 ) ) ) = ( 𝑔 ∈ 𝑋 ↦ ( 𝑧 ∈ 𝑋 ↦ ( 𝑔 ( +g ‘ 𝐺 ) 𝑧 ) ) ) |
| 82 |
81 1 14 13
|
grplactcnv |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( ( 𝑔 ∈ 𝑋 ↦ ( 𝑧 ∈ 𝑋 ↦ ( 𝑔 ( +g ‘ 𝐺 ) 𝑧 ) ) ) ‘ 𝐴 ) : 𝑋 –1-1-onto→ 𝑋 ∧ ◡ ( ( 𝑔 ∈ 𝑋 ↦ ( 𝑧 ∈ 𝑋 ↦ ( 𝑔 ( +g ‘ 𝐺 ) 𝑧 ) ) ) ‘ 𝐴 ) = ( ( 𝑔 ∈ 𝑋 ↦ ( 𝑧 ∈ 𝑋 ↦ ( 𝑔 ( +g ‘ 𝐺 ) 𝑧 ) ) ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ) ) ) |
| 83 |
22 82
|
sylan |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ( ( ( 𝑔 ∈ 𝑋 ↦ ( 𝑧 ∈ 𝑋 ↦ ( 𝑔 ( +g ‘ 𝐺 ) 𝑧 ) ) ) ‘ 𝐴 ) : 𝑋 –1-1-onto→ 𝑋 ∧ ◡ ( ( 𝑔 ∈ 𝑋 ↦ ( 𝑧 ∈ 𝑋 ↦ ( 𝑔 ( +g ‘ 𝐺 ) 𝑧 ) ) ) ‘ 𝐴 ) = ( ( 𝑔 ∈ 𝑋 ↦ ( 𝑧 ∈ 𝑋 ↦ ( 𝑔 ( +g ‘ 𝐺 ) 𝑧 ) ) ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ) ) ) |
| 84 |
83
|
simpld |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑔 ∈ 𝑋 ↦ ( 𝑧 ∈ 𝑋 ↦ ( 𝑔 ( +g ‘ 𝐺 ) 𝑧 ) ) ) ‘ 𝐴 ) : 𝑋 –1-1-onto→ 𝑋 ) |
| 85 |
81 1
|
grplactfval |
⊢ ( 𝐴 ∈ 𝑋 → ( ( 𝑔 ∈ 𝑋 ↦ ( 𝑧 ∈ 𝑋 ↦ ( 𝑔 ( +g ‘ 𝐺 ) 𝑧 ) ) ) ‘ 𝐴 ) = ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) ) |
| 86 |
85
|
adantl |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑔 ∈ 𝑋 ↦ ( 𝑧 ∈ 𝑋 ↦ ( 𝑔 ( +g ‘ 𝐺 ) 𝑧 ) ) ) ‘ 𝐴 ) = ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) ) |
| 87 |
86
|
f1oeq1d |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ( ( ( 𝑔 ∈ 𝑋 ↦ ( 𝑧 ∈ 𝑋 ↦ ( 𝑔 ( +g ‘ 𝐺 ) 𝑧 ) ) ) ‘ 𝐴 ) : 𝑋 –1-1-onto→ 𝑋 ↔ ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) : 𝑋 –1-1-onto→ 𝑋 ) ) |
| 88 |
84 87
|
mpbid |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) : 𝑋 –1-1-onto→ 𝑋 ) |
| 89 |
88
|
adantr |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ⊆ 𝑋 ∧ ( 𝐴 ∈ 𝑦 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Conn ) ) ) → ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) : 𝑋 –1-1-onto→ 𝑋 ) |
| 90 |
|
f1ocnv |
⊢ ( ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) : 𝑋 –1-1-onto→ 𝑋 → ◡ ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) : 𝑋 –1-1-onto→ 𝑋 ) |
| 91 |
|
f1ofun |
⊢ ( ◡ ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) : 𝑋 –1-1-onto→ 𝑋 → Fun ◡ ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) ) |
| 92 |
89 90 91
|
3syl |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ⊆ 𝑋 ∧ ( 𝐴 ∈ 𝑦 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Conn ) ) ) → Fun ◡ ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) ) |
| 93 |
|
f1odm |
⊢ ( ◡ ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) : 𝑋 –1-1-onto→ 𝑋 → dom ◡ ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) = 𝑋 ) |
| 94 |
89 90 93
|
3syl |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ⊆ 𝑋 ∧ ( 𝐴 ∈ 𝑦 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Conn ) ) ) → dom ◡ ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) = 𝑋 ) |
| 95 |
74 94
|
sseqtrrd |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ⊆ 𝑋 ∧ ( 𝐴 ∈ 𝑦 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Conn ) ) ) → 𝑦 ⊆ dom ◡ ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) ) |
| 96 |
|
funimass3 |
⊢ ( ( Fun ◡ ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) ∧ 𝑦 ⊆ dom ◡ ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) ) → ( ( ◡ ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑦 ) ⊆ 𝑆 ↔ 𝑦 ⊆ ( ◡ ◡ ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑆 ) ) ) |
| 97 |
92 95 96
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ⊆ 𝑋 ∧ ( 𝐴 ∈ 𝑦 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Conn ) ) ) → ( ( ◡ ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑦 ) ⊆ 𝑆 ↔ 𝑦 ⊆ ( ◡ ◡ ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑆 ) ) ) |
| 98 |
80 97
|
mpbid |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ⊆ 𝑋 ∧ ( 𝐴 ∈ 𝑦 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Conn ) ) ) → 𝑦 ⊆ ( ◡ ◡ ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑆 ) ) |
| 99 |
41
|
adantr |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ⊆ 𝑋 ∧ ( 𝐴 ∈ 𝑦 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Conn ) ) ) → [ 𝐴 ] ∼ = ( ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑆 ) ) |
| 100 |
|
imacnvcnv |
⊢ ( ◡ ◡ ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑆 ) = ( ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑆 ) |
| 101 |
99 100
|
eqtr4di |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ⊆ 𝑋 ∧ ( 𝐴 ∈ 𝑦 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Conn ) ) ) → [ 𝐴 ] ∼ = ( ◡ ◡ ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑆 ) ) |
| 102 |
98 101
|
sseqtrrd |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ⊆ 𝑋 ∧ ( 𝐴 ∈ 𝑦 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Conn ) ) ) → 𝑦 ⊆ [ 𝐴 ] ∼ ) |
| 103 |
102
|
expr |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ⊆ 𝑋 ) → ( ( 𝐴 ∈ 𝑦 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Conn ) → 𝑦 ⊆ [ 𝐴 ] ∼ ) ) |
| 104 |
58 103
|
sylan2 |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝒫 𝑋 ) → ( ( 𝐴 ∈ 𝑦 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Conn ) → 𝑦 ⊆ [ 𝐴 ] ∼ ) ) |
| 105 |
104
|
ralrimiva |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ∀ 𝑦 ∈ 𝒫 𝑋 ( ( 𝐴 ∈ 𝑦 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Conn ) → 𝑦 ⊆ [ 𝐴 ] ∼ ) ) |
| 106 |
|
eleq2w |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦 ) ) |
| 107 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐽 ↾t 𝑥 ) = ( 𝐽 ↾t 𝑦 ) ) |
| 108 |
107
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐽 ↾t 𝑥 ) ∈ Conn ↔ ( 𝐽 ↾t 𝑦 ) ∈ Conn ) ) |
| 109 |
106 108
|
anbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) ↔ ( 𝐴 ∈ 𝑦 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Conn ) ) ) |
| 110 |
109
|
ralrab |
⊢ ( ∀ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } 𝑦 ⊆ [ 𝐴 ] ∼ ↔ ∀ 𝑦 ∈ 𝒫 𝑋 ( ( 𝐴 ∈ 𝑦 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Conn ) → 𝑦 ⊆ [ 𝐴 ] ∼ ) ) |
| 111 |
105 110
|
sylibr |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ∀ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } 𝑦 ⊆ [ 𝐴 ] ∼ ) |
| 112 |
|
unissb |
⊢ ( ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } ⊆ [ 𝐴 ] ∼ ↔ ∀ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } 𝑦 ⊆ [ 𝐴 ] ∼ ) |
| 113 |
111 112
|
sylibr |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } ⊆ [ 𝐴 ] ∼ ) |
| 114 |
57 113
|
eqssd |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → [ 𝐴 ] ∼ = ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } ) |