| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oppgbas.1 |
⊢ 𝑂 = ( oppg ‘ 𝑅 ) |
| 2 |
|
oppgid.2 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 3 |
|
ancom |
⊢ ( ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 ) = 𝑦 ) ↔ ( ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 ) = 𝑦 ∧ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) = 𝑦 ) ) |
| 4 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
| 5 |
|
eqid |
⊢ ( +g ‘ 𝑂 ) = ( +g ‘ 𝑂 ) |
| 6 |
4 1 5
|
oppgplus |
⊢ ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 ) |
| 7 |
6
|
eqeq1i |
⊢ ( ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) = 𝑦 ↔ ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 ) = 𝑦 ) |
| 8 |
4 1 5
|
oppgplus |
⊢ ( 𝑦 ( +g ‘ 𝑂 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) |
| 9 |
8
|
eqeq1i |
⊢ ( ( 𝑦 ( +g ‘ 𝑂 ) 𝑥 ) = 𝑦 ↔ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) = 𝑦 ) |
| 10 |
7 9
|
anbi12i |
⊢ ( ( ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝑂 ) 𝑥 ) = 𝑦 ) ↔ ( ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 ) = 𝑦 ∧ ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) = 𝑦 ) ) |
| 11 |
3 10
|
bitr4i |
⊢ ( ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 ) = 𝑦 ) ↔ ( ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝑂 ) 𝑥 ) = 𝑦 ) ) |
| 12 |
11
|
ralbii |
⊢ ( ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 ) = 𝑦 ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝑂 ) 𝑥 ) = 𝑦 ) ) |
| 13 |
12
|
anbi2i |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 ) = 𝑦 ) ) ↔ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝑂 ) 𝑥 ) = 𝑦 ) ) ) |
| 14 |
13
|
iotabii |
⊢ ( ℩ 𝑥 ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 ) = 𝑦 ) ) ) = ( ℩ 𝑥 ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝑂 ) 𝑥 ) = 𝑦 ) ) ) |
| 15 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 16 |
15 4 2
|
grpidval |
⊢ 0 = ( ℩ 𝑥 ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 ) = 𝑦 ) ) ) |
| 17 |
1 15
|
oppgbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑂 ) |
| 18 |
|
eqid |
⊢ ( 0g ‘ 𝑂 ) = ( 0g ‘ 𝑂 ) |
| 19 |
17 5 18
|
grpidval |
⊢ ( 0g ‘ 𝑂 ) = ( ℩ 𝑥 ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( +g ‘ 𝑂 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝑂 ) 𝑥 ) = 𝑦 ) ) ) |
| 20 |
14 16 19
|
3eqtr4i |
⊢ 0 = ( 0g ‘ 𝑂 ) |