Description: Zero in a monoid is a symmetric notion. (Contributed by Stefan O'Rear, 26-Aug-2015) (Revised by Mario Carneiro, 16-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | oppgbas.1 | |
|
oppgid.2 | |
||
Assertion | oppgid | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oppgbas.1 | |
|
2 | oppgid.2 | |
|
3 | ancom | |
|
4 | eqid | |
|
5 | eqid | |
|
6 | 4 1 5 | oppgplus | |
7 | 6 | eqeq1i | |
8 | 4 1 5 | oppgplus | |
9 | 8 | eqeq1i | |
10 | 7 9 | anbi12i | |
11 | 3 10 | bitr4i | |
12 | 11 | ralbii | |
13 | 12 | anbi2i | |
14 | 13 | iotabii | |
15 | eqid | |
|
16 | 15 4 2 | grpidval | |
17 | 1 15 | oppgbas | |
18 | eqid | |
|
19 | 17 5 18 | grpidval | |
20 | 14 16 19 | 3eqtr4i | |