Metamath Proof Explorer


Theorem oppgid

Description: Zero in a monoid is a symmetric notion. (Contributed by Stefan O'Rear, 26-Aug-2015) (Revised by Mario Carneiro, 16-Sep-2015)

Ref Expression
Hypotheses oppgbas.1 O=opp𝑔R
oppgid.2 0˙=0R
Assertion oppgid 0˙=0O

Proof

Step Hyp Ref Expression
1 oppgbas.1 O=opp𝑔R
2 oppgid.2 0˙=0R
3 ancom x+Ry=yy+Rx=yy+Rx=yx+Ry=y
4 eqid +R=+R
5 eqid +O=+O
6 4 1 5 oppgplus x+Oy=y+Rx
7 6 eqeq1i x+Oy=yy+Rx=y
8 4 1 5 oppgplus y+Ox=x+Ry
9 8 eqeq1i y+Ox=yx+Ry=y
10 7 9 anbi12i x+Oy=yy+Ox=yy+Rx=yx+Ry=y
11 3 10 bitr4i x+Ry=yy+Rx=yx+Oy=yy+Ox=y
12 11 ralbii yBaseRx+Ry=yy+Rx=yyBaseRx+Oy=yy+Ox=y
13 12 anbi2i xBaseRyBaseRx+Ry=yy+Rx=yxBaseRyBaseRx+Oy=yy+Ox=y
14 13 iotabii ιx|xBaseRyBaseRx+Ry=yy+Rx=y=ιx|xBaseRyBaseRx+Oy=yy+Ox=y
15 eqid BaseR=BaseR
16 15 4 2 grpidval 0˙=ιx|xBaseRyBaseRx+Ry=yy+Rx=y
17 1 15 oppgbas BaseR=BaseO
18 eqid 0O=0O
19 17 5 18 grpidval 0O=ιx|xBaseRyBaseRx+Oy=yy+Ox=y
20 14 16 19 3eqtr4i 0˙=0O