Metamath Proof Explorer


Theorem oppgtgp

Description: The opposite of a topological group is a topological group. (Contributed by Mario Carneiro, 17-Sep-2015)

Ref Expression
Hypothesis oppgtmd.1 𝑂 = ( oppg𝐺 )
Assertion oppgtgp ( 𝐺 ∈ TopGrp → 𝑂 ∈ TopGrp )

Proof

Step Hyp Ref Expression
1 oppgtmd.1 𝑂 = ( oppg𝐺 )
2 tgpgrp ( 𝐺 ∈ TopGrp → 𝐺 ∈ Grp )
3 1 oppggrp ( 𝐺 ∈ Grp → 𝑂 ∈ Grp )
4 2 3 syl ( 𝐺 ∈ TopGrp → 𝑂 ∈ Grp )
5 tgptmd ( 𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd )
6 1 oppgtmd ( 𝐺 ∈ TopMnd → 𝑂 ∈ TopMnd )
7 5 6 syl ( 𝐺 ∈ TopGrp → 𝑂 ∈ TopMnd )
8 eqid ( invg𝐺 ) = ( invg𝐺 )
9 1 8 oppginv ( 𝐺 ∈ Grp → ( invg𝐺 ) = ( invg𝑂 ) )
10 2 9 syl ( 𝐺 ∈ TopGrp → ( invg𝐺 ) = ( invg𝑂 ) )
11 eqid ( TopOpen ‘ 𝐺 ) = ( TopOpen ‘ 𝐺 )
12 11 8 tgpinv ( 𝐺 ∈ TopGrp → ( invg𝐺 ) ∈ ( ( TopOpen ‘ 𝐺 ) Cn ( TopOpen ‘ 𝐺 ) ) )
13 10 12 eqeltrrd ( 𝐺 ∈ TopGrp → ( invg𝑂 ) ∈ ( ( TopOpen ‘ 𝐺 ) Cn ( TopOpen ‘ 𝐺 ) ) )
14 1 11 oppgtopn ( TopOpen ‘ 𝐺 ) = ( TopOpen ‘ 𝑂 )
15 eqid ( invg𝑂 ) = ( invg𝑂 )
16 14 15 istgp ( 𝑂 ∈ TopGrp ↔ ( 𝑂 ∈ Grp ∧ 𝑂 ∈ TopMnd ∧ ( invg𝑂 ) ∈ ( ( TopOpen ‘ 𝐺 ) Cn ( TopOpen ‘ 𝐺 ) ) ) )
17 4 7 13 16 syl3anbrc ( 𝐺 ∈ TopGrp → 𝑂 ∈ TopGrp )