| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oppgtmd.1 |
⊢ 𝑂 = ( oppg ‘ 𝐺 ) |
| 2 |
|
tgpgrp |
⊢ ( 𝐺 ∈ TopGrp → 𝐺 ∈ Grp ) |
| 3 |
1
|
oppggrp |
⊢ ( 𝐺 ∈ Grp → 𝑂 ∈ Grp ) |
| 4 |
2 3
|
syl |
⊢ ( 𝐺 ∈ TopGrp → 𝑂 ∈ Grp ) |
| 5 |
|
tgptmd |
⊢ ( 𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd ) |
| 6 |
1
|
oppgtmd |
⊢ ( 𝐺 ∈ TopMnd → 𝑂 ∈ TopMnd ) |
| 7 |
5 6
|
syl |
⊢ ( 𝐺 ∈ TopGrp → 𝑂 ∈ TopMnd ) |
| 8 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
| 9 |
1 8
|
oppginv |
⊢ ( 𝐺 ∈ Grp → ( invg ‘ 𝐺 ) = ( invg ‘ 𝑂 ) ) |
| 10 |
2 9
|
syl |
⊢ ( 𝐺 ∈ TopGrp → ( invg ‘ 𝐺 ) = ( invg ‘ 𝑂 ) ) |
| 11 |
|
eqid |
⊢ ( TopOpen ‘ 𝐺 ) = ( TopOpen ‘ 𝐺 ) |
| 12 |
11 8
|
tgpinv |
⊢ ( 𝐺 ∈ TopGrp → ( invg ‘ 𝐺 ) ∈ ( ( TopOpen ‘ 𝐺 ) Cn ( TopOpen ‘ 𝐺 ) ) ) |
| 13 |
10 12
|
eqeltrrd |
⊢ ( 𝐺 ∈ TopGrp → ( invg ‘ 𝑂 ) ∈ ( ( TopOpen ‘ 𝐺 ) Cn ( TopOpen ‘ 𝐺 ) ) ) |
| 14 |
1 11
|
oppgtopn |
⊢ ( TopOpen ‘ 𝐺 ) = ( TopOpen ‘ 𝑂 ) |
| 15 |
|
eqid |
⊢ ( invg ‘ 𝑂 ) = ( invg ‘ 𝑂 ) |
| 16 |
14 15
|
istgp |
⊢ ( 𝑂 ∈ TopGrp ↔ ( 𝑂 ∈ Grp ∧ 𝑂 ∈ TopMnd ∧ ( invg ‘ 𝑂 ) ∈ ( ( TopOpen ‘ 𝐺 ) Cn ( TopOpen ‘ 𝐺 ) ) ) ) |
| 17 |
4 7 13 16
|
syl3anbrc |
⊢ ( 𝐺 ∈ TopGrp → 𝑂 ∈ TopGrp ) |