Metamath Proof Explorer


Theorem oppgtgp

Description: The opposite of a topological group is a topological group. (Contributed by Mario Carneiro, 17-Sep-2015)

Ref Expression
Hypothesis oppgtmd.1 O=opp𝑔G
Assertion oppgtgp GTopGrpOTopGrp

Proof

Step Hyp Ref Expression
1 oppgtmd.1 O=opp𝑔G
2 tgpgrp GTopGrpGGrp
3 1 oppggrp GGrpOGrp
4 2 3 syl GTopGrpOGrp
5 tgptmd GTopGrpGTopMnd
6 1 oppgtmd GTopMndOTopMnd
7 5 6 syl GTopGrpOTopMnd
8 eqid invgG=invgG
9 1 8 oppginv GGrpinvgG=invgO
10 2 9 syl GTopGrpinvgG=invgO
11 eqid TopOpenG=TopOpenG
12 11 8 tgpinv GTopGrpinvgGTopOpenGCnTopOpenG
13 10 12 eqeltrrd GTopGrpinvgOTopOpenGCnTopOpenG
14 1 11 oppgtopn TopOpenG=TopOpenO
15 eqid invgO=invgO
16 14 15 istgp OTopGrpOGrpOTopMndinvgOTopOpenGCnTopOpenG
17 4 7 13 16 syl3anbrc GTopGrpOTopGrp