Description: The opposite of a topological group is a topological group. (Contributed by Mario Carneiro, 17-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | oppgtmd.1 | |
|
Assertion | oppgtgp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oppgtmd.1 | |
|
2 | tgpgrp | |
|
3 | 1 | oppggrp | |
4 | 2 3 | syl | |
5 | tgptmd | |
|
6 | 1 | oppgtmd | |
7 | 5 6 | syl | |
8 | eqid | |
|
9 | 1 8 | oppginv | |
10 | 2 9 | syl | |
11 | eqid | |
|
12 | 11 8 | tgpinv | |
13 | 10 12 | eqeltrrd | |
14 | 1 11 | oppgtopn | |
15 | eqid | |
|
16 | 14 15 | istgp | |
17 | 4 7 13 16 | syl3anbrc | |