Description: The inverse function in a topological group is a homeomorphism from the group to itself. (Contributed by Mario Carneiro, 14-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tgpcn.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | |
| tgpinv.5 | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | ||
| Assertion | grpinvhmeo | ⊢ ( 𝐺 ∈ TopGrp → 𝐼 ∈ ( 𝐽 Homeo 𝐽 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgpcn.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | |
| 2 | tgpinv.5 | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | |
| 3 | 1 2 | tgpinv | ⊢ ( 𝐺 ∈ TopGrp → 𝐼 ∈ ( 𝐽 Cn 𝐽 ) ) |
| 4 | tgpgrp | ⊢ ( 𝐺 ∈ TopGrp → 𝐺 ∈ Grp ) | |
| 5 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 6 | 5 2 | grpinvcnv | ⊢ ( 𝐺 ∈ Grp → ◡ 𝐼 = 𝐼 ) |
| 7 | 4 6 | syl | ⊢ ( 𝐺 ∈ TopGrp → ◡ 𝐼 = 𝐼 ) |
| 8 | 7 3 | eqeltrd | ⊢ ( 𝐺 ∈ TopGrp → ◡ 𝐼 ∈ ( 𝐽 Cn 𝐽 ) ) |
| 9 | ishmeo | ⊢ ( 𝐼 ∈ ( 𝐽 Homeo 𝐽 ) ↔ ( 𝐼 ∈ ( 𝐽 Cn 𝐽 ) ∧ ◡ 𝐼 ∈ ( 𝐽 Cn 𝐽 ) ) ) | |
| 10 | 3 8 9 | sylanbrc | ⊢ ( 𝐺 ∈ TopGrp → 𝐼 ∈ ( 𝐽 Homeo 𝐽 ) ) |