Description: The inverse function in a topological group is a homeomorphism from the group to itself. (Contributed by Mario Carneiro, 14-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tgpcn.j | |- J = ( TopOpen ` G ) |
|
| tgpinv.5 | |- I = ( invg ` G ) |
||
| Assertion | grpinvhmeo | |- ( G e. TopGrp -> I e. ( J Homeo J ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgpcn.j | |- J = ( TopOpen ` G ) |
|
| 2 | tgpinv.5 | |- I = ( invg ` G ) |
|
| 3 | 1 2 | tgpinv | |- ( G e. TopGrp -> I e. ( J Cn J ) ) |
| 4 | tgpgrp | |- ( G e. TopGrp -> G e. Grp ) |
|
| 5 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 6 | 5 2 | grpinvcnv | |- ( G e. Grp -> `' I = I ) |
| 7 | 4 6 | syl | |- ( G e. TopGrp -> `' I = I ) |
| 8 | 7 3 | eqeltrd | |- ( G e. TopGrp -> `' I e. ( J Cn J ) ) |
| 9 | ishmeo | |- ( I e. ( J Homeo J ) <-> ( I e. ( J Cn J ) /\ `' I e. ( J Cn J ) ) ) |
|
| 10 | 3 8 9 | sylanbrc | |- ( G e. TopGrp -> I e. ( J Homeo J ) ) |