| Step |
Hyp |
Ref |
Expression |
| 1 |
|
connima.x |
|
| 2 |
|
connima.f |
|
| 3 |
|
connima.a |
|
| 4 |
|
connima.c |
|
| 5 |
|
eqid |
|
| 6 |
1 5
|
cnf |
|
| 7 |
2 6
|
syl |
|
| 8 |
7
|
ffund |
|
| 9 |
7
|
fdmd |
|
| 10 |
3 9
|
sseqtrrd |
|
| 11 |
|
fores |
|
| 12 |
8 10 11
|
syl2anc |
|
| 13 |
|
cntop2 |
|
| 14 |
2 13
|
syl |
|
| 15 |
|
imassrn |
|
| 16 |
7
|
frnd |
|
| 17 |
15 16
|
sstrid |
|
| 18 |
5
|
restuni |
|
| 19 |
14 17 18
|
syl2anc |
|
| 20 |
|
foeq3 |
|
| 21 |
19 20
|
syl |
|
| 22 |
12 21
|
mpbid |
|
| 23 |
1
|
cnrest |
|
| 24 |
2 3 23
|
syl2anc |
|
| 25 |
|
toptopon2 |
|
| 26 |
14 25
|
sylib |
|
| 27 |
|
df-ima |
|
| 28 |
|
eqimss2 |
|
| 29 |
27 28
|
mp1i |
|
| 30 |
|
cnrest2 |
|
| 31 |
26 29 17 30
|
syl3anc |
|
| 32 |
24 31
|
mpbid |
|
| 33 |
|
eqid |
|
| 34 |
33
|
cnconn |
|
| 35 |
4 22 32 34
|
syl3anc |
|