Description: A continuous function from a connected topology with one point in a clopen set must lie entirely within the set. (Contributed by Mario Carneiro, 16-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | conncn.x | |
|
conncn.j | |
||
conncn.f | |
||
conncn.u | |
||
conncn.c | |
||
conncn.a | |
||
conncn.1 | |
||
Assertion | conncn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | conncn.x | |
|
2 | conncn.j | |
|
3 | conncn.f | |
|
4 | conncn.u | |
|
5 | conncn.c | |
|
6 | conncn.a | |
|
7 | conncn.1 | |
|
8 | eqid | |
|
9 | 1 8 | cnf | |
10 | 3 9 | syl | |
11 | 10 | ffnd | |
12 | 10 | frnd | |
13 | dffn4 | |
|
14 | 11 13 | sylib | |
15 | cntop2 | |
|
16 | 3 15 | syl | |
17 | 8 | restuni | |
18 | 16 12 17 | syl2anc | |
19 | foeq3 | |
|
20 | 18 19 | syl | |
21 | 14 20 | mpbid | |
22 | toptopon2 | |
|
23 | 16 22 | sylib | |
24 | ssidd | |
|
25 | cnrest2 | |
|
26 | 23 24 12 25 | syl3anc | |
27 | 3 26 | mpbid | |
28 | eqid | |
|
29 | 28 | cnconn | |
30 | 2 21 27 29 | syl3anc | |
31 | fnfvelrn | |
|
32 | 11 6 31 | syl2anc | |
33 | inelcm | |
|
34 | 7 32 33 | syl2anc | |
35 | 8 12 30 4 34 5 | connsubclo | |
36 | df-f | |
|
37 | 11 35 36 | sylanbrc | |