Metamath Proof Explorer


Theorem conncn

Description: A continuous function from a connected topology with one point in a clopen set must lie entirely within the set. (Contributed by Mario Carneiro, 16-Feb-2015)

Ref Expression
Hypotheses conncn.x X=J
conncn.j φJConn
conncn.f φFJCnK
conncn.u φUK
conncn.c φUClsdK
conncn.a φAX
conncn.1 φFAU
Assertion conncn φF:XU

Proof

Step Hyp Ref Expression
1 conncn.x X=J
2 conncn.j φJConn
3 conncn.f φFJCnK
4 conncn.u φUK
5 conncn.c φUClsdK
6 conncn.a φAX
7 conncn.1 φFAU
8 eqid K=K
9 1 8 cnf FJCnKF:XK
10 3 9 syl φF:XK
11 10 ffnd φFFnX
12 10 frnd φranFK
13 dffn4 FFnXF:XontoranF
14 11 13 sylib φF:XontoranF
15 cntop2 FJCnKKTop
16 3 15 syl φKTop
17 8 restuni KTopranFKranF=K𝑡ranF
18 16 12 17 syl2anc φranF=K𝑡ranF
19 foeq3 ranF=K𝑡ranFF:XontoranFF:XontoK𝑡ranF
20 18 19 syl φF:XontoranFF:XontoK𝑡ranF
21 14 20 mpbid φF:XontoK𝑡ranF
22 toptopon2 KTopKTopOnK
23 16 22 sylib φKTopOnK
24 ssidd φranFranF
25 cnrest2 KTopOnKranFranFranFKFJCnKFJCnK𝑡ranF
26 23 24 12 25 syl3anc φFJCnKFJCnK𝑡ranF
27 3 26 mpbid φFJCnK𝑡ranF
28 eqid K𝑡ranF=K𝑡ranF
29 28 cnconn JConnF:XontoK𝑡ranFFJCnK𝑡ranFK𝑡ranFConn
30 2 21 27 29 syl3anc φK𝑡ranFConn
31 fnfvelrn FFnXAXFAranF
32 11 6 31 syl2anc φFAranF
33 inelcm FAUFAranFUranF
34 7 32 33 syl2anc φUranF
35 8 12 30 4 34 5 connsubclo φranFU
36 df-f F:XUFFnXranFU
37 11 35 36 sylanbrc φF:XU