Metamath Proof Explorer


Theorem conncn

Description: A continuous function from a connected topology with one point in a clopen set must lie entirely within the set. (Contributed by Mario Carneiro, 16-Feb-2015)

Ref Expression
Hypotheses conncn.x 𝑋 = 𝐽
conncn.j ( 𝜑𝐽 ∈ Conn )
conncn.f ( 𝜑𝐹 ∈ ( 𝐽 Cn 𝐾 ) )
conncn.u ( 𝜑𝑈𝐾 )
conncn.c ( 𝜑𝑈 ∈ ( Clsd ‘ 𝐾 ) )
conncn.a ( 𝜑𝐴𝑋 )
conncn.1 ( 𝜑 → ( 𝐹𝐴 ) ∈ 𝑈 )
Assertion conncn ( 𝜑𝐹 : 𝑋𝑈 )

Proof

Step Hyp Ref Expression
1 conncn.x 𝑋 = 𝐽
2 conncn.j ( 𝜑𝐽 ∈ Conn )
3 conncn.f ( 𝜑𝐹 ∈ ( 𝐽 Cn 𝐾 ) )
4 conncn.u ( 𝜑𝑈𝐾 )
5 conncn.c ( 𝜑𝑈 ∈ ( Clsd ‘ 𝐾 ) )
6 conncn.a ( 𝜑𝐴𝑋 )
7 conncn.1 ( 𝜑 → ( 𝐹𝐴 ) ∈ 𝑈 )
8 eqid 𝐾 = 𝐾
9 1 8 cnf ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 : 𝑋 𝐾 )
10 3 9 syl ( 𝜑𝐹 : 𝑋 𝐾 )
11 10 ffnd ( 𝜑𝐹 Fn 𝑋 )
12 10 frnd ( 𝜑 → ran 𝐹 𝐾 )
13 dffn4 ( 𝐹 Fn 𝑋𝐹 : 𝑋onto→ ran 𝐹 )
14 11 13 sylib ( 𝜑𝐹 : 𝑋onto→ ran 𝐹 )
15 cntop2 ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐾 ∈ Top )
16 3 15 syl ( 𝜑𝐾 ∈ Top )
17 8 restuni ( ( 𝐾 ∈ Top ∧ ran 𝐹 𝐾 ) → ran 𝐹 = ( 𝐾t ran 𝐹 ) )
18 16 12 17 syl2anc ( 𝜑 → ran 𝐹 = ( 𝐾t ran 𝐹 ) )
19 foeq3 ( ran 𝐹 = ( 𝐾t ran 𝐹 ) → ( 𝐹 : 𝑋onto→ ran 𝐹𝐹 : 𝑋onto ( 𝐾t ran 𝐹 ) ) )
20 18 19 syl ( 𝜑 → ( 𝐹 : 𝑋onto→ ran 𝐹𝐹 : 𝑋onto ( 𝐾t ran 𝐹 ) ) )
21 14 20 mpbid ( 𝜑𝐹 : 𝑋onto ( 𝐾t ran 𝐹 ) )
22 toptopon2 ( 𝐾 ∈ Top ↔ 𝐾 ∈ ( TopOn ‘ 𝐾 ) )
23 16 22 sylib ( 𝜑𝐾 ∈ ( TopOn ‘ 𝐾 ) )
24 ssidd ( 𝜑 → ran 𝐹 ⊆ ran 𝐹 )
25 cnrest2 ( ( 𝐾 ∈ ( TopOn ‘ 𝐾 ) ∧ ran 𝐹 ⊆ ran 𝐹 ∧ ran 𝐹 𝐾 ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ 𝐹 ∈ ( 𝐽 Cn ( 𝐾t ran 𝐹 ) ) ) )
26 23 24 12 25 syl3anc ( 𝜑 → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ 𝐹 ∈ ( 𝐽 Cn ( 𝐾t ran 𝐹 ) ) ) )
27 3 26 mpbid ( 𝜑𝐹 ∈ ( 𝐽 Cn ( 𝐾t ran 𝐹 ) ) )
28 eqid ( 𝐾t ran 𝐹 ) = ( 𝐾t ran 𝐹 )
29 28 cnconn ( ( 𝐽 ∈ Conn ∧ 𝐹 : 𝑋onto ( 𝐾t ran 𝐹 ) ∧ 𝐹 ∈ ( 𝐽 Cn ( 𝐾t ran 𝐹 ) ) ) → ( 𝐾t ran 𝐹 ) ∈ Conn )
30 2 21 27 29 syl3anc ( 𝜑 → ( 𝐾t ran 𝐹 ) ∈ Conn )
31 fnfvelrn ( ( 𝐹 Fn 𝑋𝐴𝑋 ) → ( 𝐹𝐴 ) ∈ ran 𝐹 )
32 11 6 31 syl2anc ( 𝜑 → ( 𝐹𝐴 ) ∈ ran 𝐹 )
33 inelcm ( ( ( 𝐹𝐴 ) ∈ 𝑈 ∧ ( 𝐹𝐴 ) ∈ ran 𝐹 ) → ( 𝑈 ∩ ran 𝐹 ) ≠ ∅ )
34 7 32 33 syl2anc ( 𝜑 → ( 𝑈 ∩ ran 𝐹 ) ≠ ∅ )
35 8 12 30 4 34 5 connsubclo ( 𝜑 → ran 𝐹𝑈 )
36 df-f ( 𝐹 : 𝑋𝑈 ↔ ( 𝐹 Fn 𝑋 ∧ ran 𝐹𝑈 ) )
37 11 35 36 sylanbrc ( 𝜑𝐹 : 𝑋𝑈 )