| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iunconn.2 |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 2 |
|
iunconn.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ⊆ 𝑋 ) |
| 3 |
|
iunconn.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑃 ∈ 𝐵 ) |
| 4 |
|
iunconn.5 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐽 ↾t 𝐵 ) ∈ Conn ) |
| 5 |
|
iunconn.6 |
⊢ ( 𝜑 → 𝑈 ∈ 𝐽 ) |
| 6 |
|
iunconn.7 |
⊢ ( 𝜑 → 𝑉 ∈ 𝐽 ) |
| 7 |
|
iunconn.8 |
⊢ ( 𝜑 → ( 𝑉 ∩ ∪ 𝑘 ∈ 𝐴 𝐵 ) ≠ ∅ ) |
| 8 |
|
iunconn.9 |
⊢ ( 𝜑 → ( 𝑈 ∩ 𝑉 ) ⊆ ( 𝑋 ∖ ∪ 𝑘 ∈ 𝐴 𝐵 ) ) |
| 9 |
|
iunconn.10 |
⊢ ( 𝜑 → ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ ( 𝑈 ∪ 𝑉 ) ) |
| 10 |
|
iunconn.11 |
⊢ Ⅎ 𝑘 𝜑 |
| 11 |
|
n0 |
⊢ ( ( 𝑉 ∩ ∪ 𝑘 ∈ 𝐴 𝐵 ) ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( 𝑉 ∩ ∪ 𝑘 ∈ 𝐴 𝐵 ) ) |
| 12 |
7 11
|
sylib |
⊢ ( 𝜑 → ∃ 𝑥 𝑥 ∈ ( 𝑉 ∩ ∪ 𝑘 ∈ 𝐴 𝐵 ) ) |
| 13 |
|
elin |
⊢ ( 𝑥 ∈ ( 𝑉 ∩ ∪ 𝑘 ∈ 𝐴 𝐵 ) ↔ ( 𝑥 ∈ 𝑉 ∧ 𝑥 ∈ ∪ 𝑘 ∈ 𝐴 𝐵 ) ) |
| 14 |
|
eliun |
⊢ ( 𝑥 ∈ ∪ 𝑘 ∈ 𝐴 𝐵 ↔ ∃ 𝑘 ∈ 𝐴 𝑥 ∈ 𝐵 ) |
| 15 |
|
nfv |
⊢ Ⅎ 𝑘 𝑥 ∈ 𝑉 |
| 16 |
10 15
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) |
| 17 |
|
nfv |
⊢ Ⅎ 𝑘 ¬ 𝑃 ∈ 𝑈 |
| 18 |
4
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) ) → ( 𝐽 ↾t 𝐵 ) ∈ Conn ) |
| 19 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ( ( 𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑃 ∈ 𝑈 ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 20 |
2
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ( ( 𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑃 ∈ 𝑈 ) ) → 𝐵 ⊆ 𝑋 ) |
| 21 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ( ( 𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑃 ∈ 𝑈 ) ) → 𝑈 ∈ 𝐽 ) |
| 22 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ( ( 𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑃 ∈ 𝑈 ) ) → 𝑉 ∈ 𝐽 ) |
| 23 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ( ( 𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑃 ∈ 𝑈 ) ) → 𝑃 ∈ 𝑈 ) |
| 24 |
3
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ( ( 𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑃 ∈ 𝑈 ) ) → 𝑃 ∈ 𝐵 ) |
| 25 |
|
inelcm |
⊢ ( ( 𝑃 ∈ 𝑈 ∧ 𝑃 ∈ 𝐵 ) → ( 𝑈 ∩ 𝐵 ) ≠ ∅ ) |
| 26 |
23 24 25
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ( ( 𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑃 ∈ 𝑈 ) ) → ( 𝑈 ∩ 𝐵 ) ≠ ∅ ) |
| 27 |
|
inelcm |
⊢ ( ( 𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑉 ∩ 𝐵 ) ≠ ∅ ) |
| 28 |
27
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ( ( 𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑃 ∈ 𝑈 ) ) → ( 𝑉 ∩ 𝐵 ) ≠ ∅ ) |
| 29 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ( ( 𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑃 ∈ 𝑈 ) ) → ( 𝑈 ∩ 𝑉 ) ⊆ ( 𝑋 ∖ ∪ 𝑘 ∈ 𝐴 𝐵 ) ) |
| 30 |
|
ssiun2 |
⊢ ( 𝑘 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝑘 ∈ 𝐴 𝐵 ) |
| 31 |
30
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ( ( 𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑃 ∈ 𝑈 ) ) → 𝐵 ⊆ ∪ 𝑘 ∈ 𝐴 𝐵 ) |
| 32 |
31
|
sscond |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ( ( 𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑃 ∈ 𝑈 ) ) → ( 𝑋 ∖ ∪ 𝑘 ∈ 𝐴 𝐵 ) ⊆ ( 𝑋 ∖ 𝐵 ) ) |
| 33 |
29 32
|
sstrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ( ( 𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑃 ∈ 𝑈 ) ) → ( 𝑈 ∩ 𝑉 ) ⊆ ( 𝑋 ∖ 𝐵 ) ) |
| 34 |
|
inss1 |
⊢ ( 𝑈 ∩ 𝑉 ) ⊆ 𝑈 |
| 35 |
|
toponss |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) → 𝑈 ⊆ 𝑋 ) |
| 36 |
19 21 35
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ( ( 𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑃 ∈ 𝑈 ) ) → 𝑈 ⊆ 𝑋 ) |
| 37 |
34 36
|
sstrid |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ( ( 𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑃 ∈ 𝑈 ) ) → ( 𝑈 ∩ 𝑉 ) ⊆ 𝑋 ) |
| 38 |
|
reldisj |
⊢ ( ( 𝑈 ∩ 𝑉 ) ⊆ 𝑋 → ( ( ( 𝑈 ∩ 𝑉 ) ∩ 𝐵 ) = ∅ ↔ ( 𝑈 ∩ 𝑉 ) ⊆ ( 𝑋 ∖ 𝐵 ) ) ) |
| 39 |
37 38
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ( ( 𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑃 ∈ 𝑈 ) ) → ( ( ( 𝑈 ∩ 𝑉 ) ∩ 𝐵 ) = ∅ ↔ ( 𝑈 ∩ 𝑉 ) ⊆ ( 𝑋 ∖ 𝐵 ) ) ) |
| 40 |
33 39
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ( ( 𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑃 ∈ 𝑈 ) ) → ( ( 𝑈 ∩ 𝑉 ) ∩ 𝐵 ) = ∅ ) |
| 41 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ( ( 𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑃 ∈ 𝑈 ) ) → ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ ( 𝑈 ∪ 𝑉 ) ) |
| 42 |
31 41
|
sstrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ( ( 𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑃 ∈ 𝑈 ) ) → 𝐵 ⊆ ( 𝑈 ∪ 𝑉 ) ) |
| 43 |
19 20 21 22 26 28 40 42
|
nconnsubb |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ( ( 𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑃 ∈ 𝑈 ) ) → ¬ ( 𝐽 ↾t 𝐵 ) ∈ Conn ) |
| 44 |
43
|
expr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) ) → ( 𝑃 ∈ 𝑈 → ¬ ( 𝐽 ↾t 𝐵 ) ∈ Conn ) ) |
| 45 |
18 44
|
mt2d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) ) → ¬ 𝑃 ∈ 𝑈 ) |
| 46 |
45
|
an4s |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) ∧ ( 𝑘 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) → ¬ 𝑃 ∈ 𝑈 ) |
| 47 |
46
|
exp32 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( 𝑘 ∈ 𝐴 → ( 𝑥 ∈ 𝐵 → ¬ 𝑃 ∈ 𝑈 ) ) ) |
| 48 |
16 17 47
|
rexlimd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( ∃ 𝑘 ∈ 𝐴 𝑥 ∈ 𝐵 → ¬ 𝑃 ∈ 𝑈 ) ) |
| 49 |
14 48
|
biimtrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( 𝑥 ∈ ∪ 𝑘 ∈ 𝐴 𝐵 → ¬ 𝑃 ∈ 𝑈 ) ) |
| 50 |
49
|
expimpd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑉 ∧ 𝑥 ∈ ∪ 𝑘 ∈ 𝐴 𝐵 ) → ¬ 𝑃 ∈ 𝑈 ) ) |
| 51 |
13 50
|
biimtrid |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑉 ∩ ∪ 𝑘 ∈ 𝐴 𝐵 ) → ¬ 𝑃 ∈ 𝑈 ) ) |
| 52 |
51
|
exlimdv |
⊢ ( 𝜑 → ( ∃ 𝑥 𝑥 ∈ ( 𝑉 ∩ ∪ 𝑘 ∈ 𝐴 𝐵 ) → ¬ 𝑃 ∈ 𝑈 ) ) |
| 53 |
12 52
|
mpd |
⊢ ( 𝜑 → ¬ 𝑃 ∈ 𝑈 ) |