Metamath Proof Explorer


Theorem grplactcnv

Description: The left group action of element A of group G maps the underlying set X of G one-to-one onto itself. (Contributed by Paul Chapman, 18-Mar-2008) (Proof shortened by Mario Carneiro, 14-Aug-2015)

Ref Expression
Hypotheses grplact.1 F = g X a X g + ˙ a
grplact.2 X = Base G
grplact.3 + ˙ = + G
grplactcnv.4 I = inv g G
Assertion grplactcnv G Grp A X F A : X 1-1 onto X F A -1 = F I A

Proof

Step Hyp Ref Expression
1 grplact.1 F = g X a X g + ˙ a
2 grplact.2 X = Base G
3 grplact.3 + ˙ = + G
4 grplactcnv.4 I = inv g G
5 eqid a X A + ˙ a = a X A + ˙ a
6 2 3 grpcl G Grp A X a X A + ˙ a X
7 6 3expa G Grp A X a X A + ˙ a X
8 2 4 grpinvcl G Grp A X I A X
9 2 3 grpcl G Grp I A X b X I A + ˙ b X
10 9 3expa G Grp I A X b X I A + ˙ b X
11 8 10 syldanl G Grp A X b X I A + ˙ b X
12 eqcom a = I A + ˙ b I A + ˙ b = a
13 eqid 0 G = 0 G
14 2 3 13 4 grplinv G Grp A X I A + ˙ A = 0 G
15 14 adantr G Grp A X a X b X I A + ˙ A = 0 G
16 15 oveq1d G Grp A X a X b X I A + ˙ A + ˙ a = 0 G + ˙ a
17 simpll G Grp A X a X b X G Grp
18 8 adantr G Grp A X a X b X I A X
19 simplr G Grp A X a X b X A X
20 simprl G Grp A X a X b X a X
21 2 3 grpass G Grp I A X A X a X I A + ˙ A + ˙ a = I A + ˙ A + ˙ a
22 17 18 19 20 21 syl13anc G Grp A X a X b X I A + ˙ A + ˙ a = I A + ˙ A + ˙ a
23 2 3 13 grplid G Grp a X 0 G + ˙ a = a
24 23 ad2ant2r G Grp A X a X b X 0 G + ˙ a = a
25 16 22 24 3eqtr3rd G Grp A X a X b X a = I A + ˙ A + ˙ a
26 25 eqeq2d G Grp A X a X b X I A + ˙ b = a I A + ˙ b = I A + ˙ A + ˙ a
27 12 26 syl5bb G Grp A X a X b X a = I A + ˙ b I A + ˙ b = I A + ˙ A + ˙ a
28 simprr G Grp A X a X b X b X
29 7 adantrr G Grp A X a X b X A + ˙ a X
30 2 3 grplcan G Grp b X A + ˙ a X I A X I A + ˙ b = I A + ˙ A + ˙ a b = A + ˙ a
31 17 28 29 18 30 syl13anc G Grp A X a X b X I A + ˙ b = I A + ˙ A + ˙ a b = A + ˙ a
32 27 31 bitrd G Grp A X a X b X a = I A + ˙ b b = A + ˙ a
33 5 7 11 32 f1ocnv2d G Grp A X a X A + ˙ a : X 1-1 onto X a X A + ˙ a -1 = b X I A + ˙ b
34 1 2 grplactfval A X F A = a X A + ˙ a
35 34 adantl G Grp A X F A = a X A + ˙ a
36 f1oeq1 F A = a X A + ˙ a F A : X 1-1 onto X a X A + ˙ a : X 1-1 onto X
37 35 36 syl G Grp A X F A : X 1-1 onto X a X A + ˙ a : X 1-1 onto X
38 35 cnveqd G Grp A X F A -1 = a X A + ˙ a -1
39 1 2 grplactfval I A X F I A = a X I A + ˙ a
40 oveq2 a = b I A + ˙ a = I A + ˙ b
41 40 cbvmptv a X I A + ˙ a = b X I A + ˙ b
42 39 41 eqtrdi I A X F I A = b X I A + ˙ b
43 8 42 syl G Grp A X F I A = b X I A + ˙ b
44 38 43 eqeq12d G Grp A X F A -1 = F I A a X A + ˙ a -1 = b X I A + ˙ b
45 37 44 anbi12d G Grp A X F A : X 1-1 onto X F A -1 = F I A a X A + ˙ a : X 1-1 onto X a X A + ˙ a -1 = b X I A + ˙ b
46 33 45 mpbird G Grp A X F A : X 1-1 onto X F A -1 = F I A